Solveeit Logo

Question

Question: Find the value of x, if log2 = a, log3 = b , log7 = c and \({6^{\text{x}}} = {7^{{\text{x + 4}}}}\) ...

Find the value of x, if log2 = a, log3 = b , log7 = c and 6x=7x + 4{6^{\text{x}}} = {7^{{\text{x + 4}}}}
A. 4bc + a - b B. 4ca + b - c C. 4bc - a - b D. 4aa + b - c  {\text{A}}{\text{. }}\dfrac{{4{\text{b}}}}{{{\text{c + a - b}}}} \\\ {\text{B}}{\text{. }}\dfrac{{4{\text{c}}}}{{{\text{a + b - c}}}} \\\ {\text{C}}{\text{. }}\dfrac{{4{\text{b}}}}{{{\text{c - a - b}}}} \\\ {\text{D}}{\text{. }}\dfrac{{4{\text{a}}}}{{{\text{a + b - c}}}} \\\

Explanation

Solution

Hint: Take log both sides of the equation 6x=7x + 4{6^{\text{x}}} = {7^{{\text{x + 4}}}} and use properties of logarithms.

Complete step-by-step answer:
Let,
log2 = a …………….(1)
log3 = b ……………..(2)
log7 = c ……………….(3)
6x=7x + 4{6^{\text{x}}} = {7^{{\text{x + 4}}}} ……………….(4)
As for any positive real number k, other than 1 such that km = x{{\text{k}}^{\text{m}}}{\text{ = x}} then , a logarithmic function can be defined as m = logkx{\text{m = lo}}{{\text{g}}_{\text{k}}}{\text{x}}, where k is the base.
Now, in equation 4 we have, 6x{6^{\text{x}}} = 7x + 4{7^{{\text{x + 4}}}} . On taking log both sides , we get
log(6x{6^{\text{x}}}) = log(7x + 4{7^{{\text{x + 4}}}})
Applying the property of logarithm which states log(an)=nlog(a){\text{log(}}{{\text{a}}^{\text{n}}}) = {\text{nlog(a)}}, we get
xlog6=(x+4)log7
xlog(3×2) = xlog7 + 4log7   {\text{xlog(3}} \times {\text{2) = xlog7 + 4log7}} \\\ \\\
Applying another property of logarithm which states log(a×b) = loga + logb{\text{log(a}} \times {\text{b) = loga + logb}}, we get
xlog3 + xlog2 – xlog7 = 4log7
Substituting the values of log2, log3 and log 7 from equation 1,2 and 3.
ax + bx – cx = 4c
x(a +b -c) = 4c
or, x = 4ca + b - c\dfrac{{{\text{4c}}}}{{{\text{a + b - c}}}}.
Answer is option (b).

Note: In these types of questions, the key concept is to remember the properties of logarithm. The logarithm question requires only two steps. Step 1 is to convert the equation into logarithmic form. Step 2, is apply the properties of logarithm and simplify it to the end.