Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the value of xx for whichx(i^+j^+k^) x(\hat{i}+\hat{j}+\hat{k})is a unit vector.

Answer

x(i^+j^+k^)x(\hat{i}+\hat{j}+\hat{k})is a unit vector if x(i^+j^+k^)=1|x(\hat{i}+\hat{j}+\hat{k})|=1
Now,
x(i^+j^+k^)=1|x(\hat{i}+\hat{j}+\hat{k})|=1
x2+x2+x2=1⇒\sqrt{x^{2}+x^{2}+x^{2}}=1
3x2=1⇒\sqrt{3x^{2}}=1
3x=1⇒\sqrt{3}x=1
x=±13⇒x=\pm\frac{1}{\sqrt{3}}
Hence,the required value of xx is ±13.\pm\frac{1}{\sqrt{3}}.