Solveeit Logo

Question

Question: Find the value of \[x\] for which \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left(...

Find the value of xx for which sin(cot1(1+x))=cos(tan1x)\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right) is satisfied.
(a) 12\dfrac{1}{2}
(b) 1
(c) 0
(d) 12-\dfrac{1}{2}

Explanation

Solution

In this question, we are given with the equation sin(cot1(1+x))=cos(tan1x)\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right).
Now we will use the identity of the trigonometric function say sin(θ)=cos(π2θ)\sin \left( \theta \right)=\cos \left( \dfrac{\pi }{2}-\theta \right). Also we will use the property that if cosx=cosy\cos x=\cos y, then we have that x=2nπ±yx=2n\pi \pm y for integers values nn. Using these properties of trigonometric functions, we will get our desired answer.

Complete step by step answer:
We are given with the equation sin(cot1(1+x))=cos(tan1x).............(1)\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right).............(1).
Now since we know that for any θ[0,2π]\theta \in \left[ 0,2\pi \right], sin(θ)=cos(π2θ)\sin \left( \theta \right)=\cos \left( \dfrac{\pi }{2}-\theta \right).
Therefore we can have
sin(cot1(1+x))=cos(π2cot1(1+x)).............(2)\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( \dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right) \right).............(2)
Now on substituting the value of equation (2) in equation (1), we will have
cos(π2cot1(1+x))=cos(tan1x).............(3)\cos \left( \dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right).............(3)
Since we also know the property of the trigonometric function that if cosa=cosb\cos a=\cos b, then we have that a=2nπ±ba=2n\pi \pm b for all integers values nn.
Now on comparing equation (3) with cosa=cosb\cos a=\cos b, we have that
a=π2cot1(1+x)a=\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right) and
b=tan1xb={{\tan }^{-1}}x
Therefore using the property that if cosa=cosb\cos a=\cos b, then we have that a=2nπ±ba=2n\pi \pm b for all integers values nn, we will have
π2cot1(1+x)=2nπ±tan1x\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=2n\pi \pm {{\tan }^{-1}}x for all integers values nn.
Now since the above equation is true all the integer values of nn, hence it is also true for n=0n=0.
Now on substituting the value n=0n=0 in the above equation π2cot1(1+x)=2nπ±tan1x\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=2n\pi \pm {{\tan }^{-1}}x, we will have
π2cot1(1+x)=0±tan1x\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=0\pm {{\tan }^{-1}}x
This implies that
π2=cot1(1+x)±tan1x............(4)\dfrac{\pi }{2}={{\cot }^{-1}}\left( 1+x \right)\pm {{\tan }^{-1}}x............(4)
Now since we know that cot1x=π2tan1x{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x for all values of xx.
Hence we can have cot1(1+x)=π2tan1(1+x){{\cot }^{-1}}\left( 1+x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)
Therefore on substituting the value cot1(1+x)=π2tan1(1+x){{\cot }^{-1}}\left( 1+x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right) in the above equation (4), we get
π2=π2tan1(1+x)±tan1x\dfrac{\pi }{2}=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)\pm {{\tan }^{-1}}x
Therefore we have
tan1(1+x)=±tan1x{{\tan }^{-1}}\left( 1+x \right)=\pm {{\tan }^{-1}}x
Now since we know that if ±tan1x=tan1(±x)\pm {{\tan }^{-1}}x={{\tan }^{-1}}\left( \pm x \right)
Therefore we get
tan1(1+x)=tan1(±x){{\tan }^{-1}}\left( 1+x \right)={{\tan }^{-1}}\left( \pm x \right)
Also if tan1x=tan1y{{\tan }^{-1}}x={{\tan }^{-1}}y, then x=yx=y.
Therefore form tan1(1+x)=tan1(±x){{\tan }^{-1}}\left( 1+x \right)={{\tan }^{-1}}\left( \pm x \right), we get that
1+x=±x1+x=\pm x
Now since we cannot have 1+x=x1+x=x for any value of xx, hence we must have
1+x=x1+x=-x
This implies that

& -2x=1 \\\ & \Rightarrow x=-\dfrac{1}{2} \end{aligned}$$ Therefore we have that for $$x=-\dfrac{1}{2}$$ we have that the given equation $$\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)$$ is satisfied. **So, the correct answer is “Option D”.** **Note:** In this problem, in order to determine the value of $$x$$ for which the given equation $$\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)$$ is satisfied we can substitute the value $${{\cot }^{-1}}\left( 1+x \right)=a$$ and $${{\tan }^{-1}}x=b$$ to get that $$1+x=\cot a$$ and $$x=\tan b$$. Then we have found the values of $$a$$ and $$b$$ using the properties of $$\cot $$ and $$\tan $$ function. Then on substituting the values in $$\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)$$ we have form a quadratic equation in $$x$$. On solving the same we can get the desired answer.