Solveeit Logo

Question

Question: Find the value of x for the following \(\dfrac{14x}{x+1}-\dfrac{9x-30}{x-4}< 0\)...

Find the value of x for the following 14xx+19x30x4<0\dfrac{14x}{x+1}-\dfrac{9x-30}{x-4}< 0

Explanation

Solution

For this kind of problem we have to find the range of xx for which the given expression is valid. So, we will first observe the expression, then we will find that for x+10x+1\ne 0, x40x-4\ne 0 the given expression gives a real output. From these conditions, we can have the values of xx for which the given expression becomes undefined. Further, we will simplify the given expression by subtracting the given terms. Now we will get a quadratic equation in terms of xx, so we will solve this quadratic equation according to the given expression, then we will get the range of the xx, for which the given expression is valid. Now For the final result, we will exclude the values of xx where the function becomes undefined, from the range of xx.

Complete step-by-step solution:
Given that, 14xx+19x30x4<0\dfrac{14x}{x+1}-\dfrac{9x-30}{x-4}< 0
Now we are taking L.C.M of the terms (x+1)\left( x+1 \right) and (x4)\left( x-4 \right) as (x+1)(x4)\left( x+1 \right)\left( x-4 \right) and simplifying the above expression, then we will get
14xx+19x30x4<0 14x(x4)(9x30)(x+1)(x+1)(x4)<0 \begin{aligned} & \Rightarrow \dfrac{14x}{x+1}-\dfrac{9x-30}{x-4}< 0 \\\ & \Rightarrow \dfrac{14x\left( x-4 \right)-\left( 9x-30 \right)\left( x+1 \right)}{\left( x+1 \right)\left( x-4 \right)}< 0 \\\ \end{aligned}
Here the values of x+1x+1 and x4x-4 should not be equals to zero, then only the given expression is valid. Hence
x+10 x01 x1 \begin{aligned} & \Rightarrow x+1\ne 0 \\\ &\Rightarrow x\ne 0-1 \\\ &\Rightarrow x\ne -1 \\\ \end{aligned} and x40 x0+4 x4 \begin{aligned} & \Rightarrow x-4\ne 0 \\\ & \Rightarrow x\ne 0+4 \\\ & \Rightarrow x\ne 4 \\\ \end{aligned}
We have distribution property in multiplication as a(b+c)=ab+aca\left( b+c \right)=ab+ac, (a+b)(c+d)=a(c+d)+b(c+d)\left( a+b \right)\left( c+d \right)=a\left( c+d \right)+b\left( c+d \right) hence
14x(x)14x(4)[9x(x+1)30(x+1)](x+1)(x4)<0\dfrac{14x\left( x \right)-14x\left( 4 \right)-\left[ 9x\left( x+1 \right)-30\left( x+1 \right) \right]}{\left( x+1 \right)\left( x-4 \right)} < 0
When we multiplied a positive sign/integer with the negative sign/integer then we will get a negative sign/integer. At the same time, we will get a positive sign/integer when we multiplied a positive sign/integer with the same positive sign/integer. Then we will have
14x256x[9x2+9x30x30](x+1)(x4)<0 14x256x9x29x+30x+30(x+1)(x4)<0 \begin{aligned} & \Rightarrow \dfrac{14{{x}^{2}}-56x-\left[ 9{{x}^{2}}+9x-30x-30 \right]}{\left( x+1 \right)\left( x-4 \right)}< 0 \\\ & \Rightarrow \dfrac{14{{x}^{2}}-56x-9{{x}^{2}}-9x+30x+30}{\left( x+1 \right)\left( x-4 \right)}< 0 \\\ \end{aligned}
Rearranging the above terms to simplify the above expression
14x29x256x9x+30x+30(x+1)(x4)<0 5x235x+30(x+1)(x4)<0 \begin{aligned} &\Rightarrow \dfrac{14{{x}^{2}}-9{{x}^{2}}-56x-9x+30x+30}{\left( x+1 \right)\left( x-4 \right)}< 0 \\\ & \Rightarrow \dfrac{5{{x}^{2}}-35x+30}{\left( x+1 \right)\left( x-4 \right)}< 0 \\\ \end{aligned}
Multiplying the above expression with (x+1)(x4)\left( x+1 \right)\left( x-4 \right)on both sides, then we will get
(x+1)(x4)×5x235x+30(x+1)(x4)<0(x+1)(x4)\Rightarrow \left( x+1 \right)\left( x-4 \right)\times \dfrac{5{{x}^{2}}-35x+30}{\left( x+1 \right)\left( x-4 \right)}<0\left( x+1 \right)\left( x-4 \right)
We know that when we multiplied something with Zero then we will get Zero as result and a×1a=1a\times \dfrac{1}{a}=1, then we will have
5x235x+30<0\Rightarrow 5{{x}^{2}}-35x+30< 0
Dividing the above equation with 55 into both sides of the expression, then we will have
15(5x235x+30)<15(0) x27x+6<0 \begin{aligned} & \Rightarrow \dfrac{1}{5}\left( 5{{x}^{2}}-35x+30 \right)< \dfrac{1}{5}\left( 0 \right) \\\ & \Rightarrow {{x}^{2}}-7x+6< 0 \\\ \end{aligned}
Now finding the solution for the above expression, then we will have
x27x+6<0 x2x6x+6<0 \begin{aligned} & \Rightarrow {{x}^{2}}-7x+6< 0 \\\ & \Rightarrow {{x}^{2}}-x-6x+6< 0 \\\ \end{aligned}
Taking xx common from x2x{{x}^{2}}-x and taking 6-6 common from 6x+6-6x+6, then we will have
x(x1)6(x1)<0\Rightarrow x\left( x-1 \right)-6\left( x-1 \right)< 0
Again taking (x1)\left( x-1 \right) as common from the above expression, then we will have
(x1)(x6)<0\Rightarrow \left( x-1 \right)\left( x-6 \right)< 0
Now equating both the terms in the above expression individually, then we will get
x1>0 and x6<0 x>0+1 and x<0+6 x>1 and x<6 \begin{aligned} & \Rightarrow x-1>0\text{ and }x-6<0 \\\ & \Rightarrow x>0+1\text{ and }x<0+6 \\\ & \Rightarrow x>1\text{ and }x<6 \\\ \end{aligned}
Now we use the wavy curve method to have and check the sign of the function say f(x)=14xx+19x30x4f\left( x \right)=\dfrac{14x}{x+1}-\dfrac{9x-30}{x-4} within the intervals (1,1),(1,4),(4,6)\left( -1,1 \right),\left( 1,4 \right),\left( 4,6 \right) by taking any value within those intervals.

& \Rightarrow f\left( 0 \right)=\dfrac{14\cdot 0}{0+1}-\dfrac{9\cdot 0-30}{0-4}=-34<0 \\\ & \Rightarrow f\left( 3 \right)=\dfrac{14\cdot 3}{3+1}-\dfrac{9\cdot 3-30}{3-4}=10.5-3>0 \\\ & \Rightarrow f\left( 5 \right)=\dfrac{14\cdot 5}{5+1}-\dfrac{9\cdot 5-30}{5-4}=11.\overline{6}-21.5<0 \\\ \end{aligned}$$ We have; ![](https://www.vedantu.com/question-sets/917963e0-13b6-4f5d-9b8b-cda50241f4608716795130596364299.png) So the function satisfies only in the intervals$\left( -1,1 \right),\left( 4,6 \right)$ and the value of $x$ lie in $\left( -1,1 \right),\left( 4,6 \right)$. **Note:** We should consider the terms which are in denominator, then only the function is valid for the given values of $x$. Students may don’t know what to find in this type of problem since in the problem we are not asked to find anything. So here the problem is given to us to calculate the range of $x$, where the given expression is valid.