Question
Question: Find the value of x \[\dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \tan xA\]....
Find the value of x cosA+cos3AsinA+sin3A=tanxA.
Solution
Here, we will simplify the left-hand side using various properties of trigonometric functions. We will convert the left-hand side into a function of tangent. Then we will compare the Left-hand side and the Right-hand side and find the value of x.
Formulas used: We will use following formulas:
1.3sinA=3sinA−4sin3A
2.cos3A=4cos3A−3cosA
3.sin2A=2sinAcosA
4.cos2A=2cos2A−1
5.sin2A+cos2A=1
Complete step-by-step answer:
We will start by simplifying the numerator. We know that sin3A is the same as .., we will substitute the value in the numerator:
⇒cosA+cos3AsinA+sin3A=cosA+cos3AsinA+(3sinA−4sin3A)
We know that cos3A is the same as 4cos3A−3cosA. We will substitute the value in the denominator:
⇒cosA+cos3AsinA+sin3A=cosA+4cos3A−3cosAsinA+3sinA−4sin3A
We will add the like terms:
⇒cosA+cos3AsinA+sin3A=4cos3A−2cosA4sinA−4sin3A
We will take out the common factors of terms in the numerator and the denominator:
⇒cosA+cos3AsinA+sin3A=2cosA(2cos2A−1)4sinA(1−sin2A)
We know that:
⇒cos2x+sin2A=1 ⇒cos2x=1−sin2A
We will substitute cos2A for 1−sin2A in the numerator:
⇒cosA+cos3AsinA+sin3A=2cosA(2cos2A−1)4sinAcos2A
We will cancel the common terms in the numerator and the denominator:
⇒cosA+cos3AsinA+sin3A=(2cos2A−1)2sinAcosA
We know that 2sinAcosA is the same as sin2A, we will substitute the value in the numerator:
⇒cosA+cos3AsinA+sin3A=(2cos2A−1)sin2A
We know that 2cos2A−1 is the same as cos2A. We will substitute the value in the denominator:
⇒cosA+cos3AsinA+sin3A=cos2Asin2A
We will simplify the above expression using the formula for the tangent of an angle; that is, the ratio of the Sine of an angle to the Cosine of an angle is equal to the Tangent of that angle:
⇒cosA+cos3AsinA+sin3A=tan2A
We will compare the Left-hand side with the Right-hand side:
tan2A=tanxA ⇒2=x
∴ The value of x is 2.
Note: We know that that the Sine and Cosine of the sum of 2 angles is:
sin(x+y)=sinxcosy+cosxsinycos(x+y)=cosxcosy−sinxsiny
We can derive the formulas of sin2A,sin3A,cos2A and cos3A that we have used in the solution using the above formulas.