Solveeit Logo

Question

Question: Find the value of x \[\dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \tan xA\]....

Find the value of x sinA+sin3AcosA+cos3A=tanxA\dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \tan xA.

Explanation

Solution

Here, we will simplify the left-hand side using various properties of trigonometric functions. We will convert the left-hand side into a function of tangent. Then we will compare the Left-hand side and the Right-hand side and find the value of xx.

Formulas used: We will use following formulas:
1.3sinA=3sinA4sin3A3\sin A = 3\sin A - 4{\sin ^3}A
2.cos3A=4cos3A3cosA\cos 3A = 4{\cos ^3}A - 3\cos A
3.sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
4.cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
5.sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1

Complete step-by-step answer:
We will start by simplifying the numerator. We know that sin3A\sin 3A is the same as .., we will substitute the value in the numerator:
sinA+sin3AcosA+cos3A=sinA+(3sinA4sin3A)cosA+cos3A\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin A + \left( {3\sin A - 4{{\sin }^3}A} \right)}}{{\cos A + \cos 3A}}
We know that cos3A\cos 3A is the same as 4cos3A3cosA4{\cos ^3}A - 3\cos A. We will substitute the value in the denominator:
sinA+sin3AcosA+cos3A=sinA+3sinA4sin3AcosA+4cos3A3cosA\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin A + 3\sin A - 4{{\sin }^3}A}}{{\cos A + 4{{\cos }^3}A - 3\cos A}}
We will add the like terms:
sinA+sin3AcosA+cos3A=4sinA4sin3A4cos3A2cosA\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A - 4{{\sin }^3}A}}{{4{{\cos }^3}A - 2\cos A}}
We will take out the common factors of terms in the numerator and the denominator:
sinA+sin3AcosA+cos3A=4sinA(1sin2A)2cosA(2cos2A1)\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A\left( {1 - {{\sin }^2}A} \right)}}{{2\cos A\left( {2{{\cos }^2}A - 1} \right)}}
We know that:
cos2x+sin2A=1 cos2x=1sin2A\begin{array}{l} \Rightarrow {\cos ^2}x + {\sin ^2}A = 1\\\ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}A\end{array}
We will substitute cos2A{\cos ^2}A for 1sin2A1 - {\sin ^2}A in the numerator:
sinA+sin3AcosA+cos3A=4sinAcos2A2cosA(2cos2A1)\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A{{\cos }^2}A}}{{2\cos A\left( {2{{\cos }^2}A - 1} \right)}}
We will cancel the common terms in the numerator and the denominator:
sinA+sin3AcosA+cos3A=2sinAcosA(2cos2A1)\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{2\sin A\cos A}}{{\left( {2{{\cos }^2}A - 1} \right)}}
We know that 2sinAcosA2\sin A\cos A is the same as sin2A\sin 2A, we will substitute the value in the numerator:
sinA+sin3AcosA+cos3A=sin2A(2cos2A1)\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin 2A}}{{\left( {2{{\cos }^2}A - 1} \right)}}
We know that 2cos2A12{\cos ^2}A - 1 is the same as cos2A\cos 2A. We will substitute the value in the denominator:
sinA+sin3AcosA+cos3A=sin2Acos2A\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin 2A}}{{\cos 2A}}
We will simplify the above expression using the formula for the tangent of an angle; that is, the ratio of the Sine of an angle to the Cosine of an angle is equal to the Tangent of that angle:
sinA+sin3AcosA+cos3A=tan2A\Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \tan 2A
We will compare the Left-hand side with the Right-hand side:
tan2A=tanxA 2=x\begin{array}{l}\tan 2A = \tan xA\\\ \Rightarrow 2 = x\end{array}
\therefore The value of xx is 2.

Note: We know that that the Sine and Cosine of the sum of 2 angles is:
sin(x+y)=sinxcosy+cosxsinycos(x+y)=cosxcosysinxsiny\begin{array}{l}\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\\\\\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\end{array}
We can derive the formulas of sin2A,sin3A,cos2A\sin 2A,\sin 3A,\cos 2A and cos3A\cos 3A that we have used in the solution using the above formulas.