Question
Question: Find the value of \[{{x}^{3}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\], If \[y=ln{{\left( \dfrac{x}{a+bx} \ri...
Find the value of x3dx2d2y, If y=ln(a+bxx)x,
(a)(dxdy+x)2
(b) (dxdy−y)2
(c) (xdxdy+y)2
(d) (xdxdy−y)2
Solution
Hint: To solve this question first apply the log rule to simplify the given function and then proceed with applying the rules of differentiation to get the first derivative again to differentiate the first derivative to get the required answer.
Complete step-by-step solution -
The given expression is y=ln(a+bxx)x
But we know, logxn=nlogx , so the given equation becomes,
y=x⋅ln(a+bxx)
Differentiate the given expression with respect to x, we get
dxdy=dxd(x⋅ln(a+bxx))
We know that dxd(u⋅v)=udxdv+vdxdu so the above equation becomes,
dxdy=xdxd(ln(a+bxx))+ln(a+bxx)dxd(x)
We also know that, dxd(lnx)=x1, so above equation becomes,
\dfrac{dy}{dx}=x\times \dfrac{1}{\left( \dfrac{x}{a+bx} \right)}\times \dfrac{d}{dx}\left\\{ \dfrac{x}{a+bx} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)\times 1
Now we will apply the quotient rule, i.e., dxd(vu)=v2vdxd(u)−udxd(v) , so the above equation becomes,
\dfrac{dy}{dx}=x\times \dfrac{a+bx}{x}\times \left\\{ \dfrac{(a+bx)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(a+bx)}{{{\left( a+bx \right)}^{2}}} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)
We know differentiation of constant term is zero, so the above equation can be written as
\dfrac{dy}{dx}=(a+bx)\times \left\\{ \dfrac{(a+bx)\times 1-x(b)}{{{\left( a+bx \right)}^{2}}} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)
\Rightarrow \dfrac{dy}{dx}=\left\\{ \dfrac{a+bx-bx}{\left( a+bx \right)} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)
⇒dxdy=ln(a+bxx)+a+bxa.........(i)
Consider the given expression,
y=x⋅ln(a+bxx)
⇒xy=ln(a+bxx)...........(ii)
Substituting the value from equation (ii) into equation (i), we get
⇒dxdy=xy+a+bxa..........(iii)
Now we will find the second derivative, so differentiating equation (iii) with respect to ′x′, we get
⇒dxd(dxdy)=dxd(xy+a+bxa)
Now we will apply the sum rule of differentiation, we get
⇒dx2d2y=dxd(xy)+dxd(a+bxa)
Now we will apply the quotient rule, i.e., dxd(vu)=v2vdxd(u)−udxd(v) and taking out the constant term, so the above equation becomes,
⇒dx2d2y=x2xdxdy−ydxd(x)+adxd(a+bx)−1
⇒dx2d2y=x2xdxdy−x2y+a(−1)(a+bx)−1−1dxd(a+bx)
⇒dx2d2y=x1dxdy−x2y−(a+bx)2ab
Now substitute value from equation (iii), we get
⇒dx2d2y=x1(xy+a+bxa)−x2y−(a+bx)2ab
⇒dx2d2y=x2y+x(a+bx)a−x2y−(a+bx)2ab
Cancelling the like terms, we get
⇒dx2d2y=x(a+bx)a−(a+bx)2ab
Taking the LCM and solving, we get
⇒dx2d2y=x(a+bx)2a(a+bx)−xab
⇒dx2d2y=x(a+bx)2a2+abx−xab
Cancelling the like terms, we get
⇒dx2d2y=x(a+bx)2a2=x1(a+bxa)2.........(iv)
Now consider equation (iii),
dxdy=xy+a+bxa
∴a+bxa=dxdy−xy
Put this value in equation (iv), we get
⇒dx2d2y=x1(dxdy−xy)2
Multiply both sides by x3, we get
⇒x3dx2d2y=xx3(dxdy−xy)2
⇒x3dx2d2y=x2(dxdy−xy)2
⇒x3dx2d2y=(xdxdy−y)2
Hence the correct answer is option (d).
Note: We can also use the formula \dfrac{d}{dx}\left\\{ f{{\left( x \right)}^{g\left( x \right)}} \right\\}=f{{\left( x \right)}^{g\left( x \right)}}\times \dfrac{d}{dx}\left\\{ g(x)\ln \left( f(x) \right) \right\\}
In this method also we will get the same result.