Solveeit Logo

Question

Question: Find the value of \[{{x}^{3}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\], If \[y=ln{{\left( \dfrac{x}{a+bx} \ri...

Find the value of x3d2ydx2{{x}^{3}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}, If y=ln(xa+bx)xy=ln{{\left( \dfrac{x}{a+bx} \right)}^{x}},
(a)(dydx+x)2\,{{\left( \dfrac{dy}{dx}+x \right)}^{2}}
(b) (dydxy)2\,{{\left( \dfrac{dy}{dx}-y \right)}^{2}}
(c) (xdydx+y)2{{\left( x\dfrac{dy}{dx}+y \right)}^{2}}\,
(d) (xdydxy)2{{\left( x\dfrac{dy}{dx}-y \right)}^{2}}

Explanation

Solution

Hint: To solve this question first apply the log rule to simplify the given function and then proceed with applying the rules of differentiation to get the first derivative again to differentiate the first derivative to get the required answer.

Complete step-by-step solution -
The given expression is y=ln(xa+bx)xy=ln{{\left( \dfrac{x}{a+bx} \right)}^{x}}
But we know, logxn=nlogx\log {{x}^{n}}=n\log x , so the given equation becomes,
y=xln(xa+bx)y=x\cdot ln\left( \dfrac{x}{a+bx} \right)
Differentiate the given expression with respect to xx, we get
dydx=ddx(xln(xa+bx))\dfrac{dy}{dx}=\dfrac{d}{dx}\left( x\cdot ln\left( \dfrac{x}{a+bx} \right) \right)
We know that ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u so the above equation becomes,
dydx=xddx(ln(xa+bx))+ln(xa+bx)ddx(x)\dfrac{dy}{dx}=x\dfrac{d}{dx}\left( ln\left( \dfrac{x}{a+bx} \right) \right)+ln\left( \dfrac{x}{a+bx} \right)\dfrac{d}{dx}\left( x \right)
We also know that, ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}, so above equation becomes,
\dfrac{dy}{dx}=x\times \dfrac{1}{\left( \dfrac{x}{a+bx} \right)}\times \dfrac{d}{dx}\left\\{ \dfrac{x}{a+bx} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)\times 1
Now we will apply the quotient rule, i.e., ddx(uv)=vddx(u)uddx(v)v2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}} , so the above equation becomes,
\dfrac{dy}{dx}=x\times \dfrac{a+bx}{x}\times \left\\{ \dfrac{(a+bx)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(a+bx)}{{{\left( a+bx \right)}^{2}}} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)
We know differentiation of constant term is zero, so the above equation can be written as
\dfrac{dy}{dx}=(a+bx)\times \left\\{ \dfrac{(a+bx)\times 1-x(b)}{{{\left( a+bx \right)}^{2}}} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)
\Rightarrow \dfrac{dy}{dx}=\left\\{ \dfrac{a+bx-bx}{\left( a+bx \right)} \right\\}+\ln \left( \dfrac{x}{a+bx} \right)
dydx=ln(xa+bx)+aa+bx.........(i)\Rightarrow \dfrac{dy}{dx}=\ln \left( \dfrac{x}{a+bx} \right)+\dfrac{a}{a+bx}.........(i)
Consider the given expression,
y=xln(xa+bx)y=x\cdot ln\left( \dfrac{x}{a+bx} \right)
yx=ln(xa+bx)...........(ii)\Rightarrow \dfrac{y}{x}=ln\left( \dfrac{x}{a+bx} \right)...........(ii)
Substituting the value from equation (ii) into equation (i), we get
dydx=yx+aa+bx..........(iii)\Rightarrow \dfrac{dy}{dx}=\dfrac{y}{x}+\dfrac{a}{a+bx}..........(iii)
Now we will find the second derivative, so differentiating equation (iii) with respect to x'x', we get
ddx(dydx)=ddx(yx+aa+bx)\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{y}{x}+\dfrac{a}{a+bx} \right)
Now we will apply the sum rule of differentiation, we get
d2ydx2=ddx(yx)+ddx(aa+bx)\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{y}{x} \right)+\dfrac{d}{dx}\left( \dfrac{a}{a+bx} \right)
Now we will apply the quotient rule, i.e., ddx(uv)=vddx(u)uddx(v)v2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}} and taking out the constant term, so the above equation becomes,
d2ydx2=xdydxyd(x)dxx2+addx(a+bx)1\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\dfrac{dy}{dx}-y\dfrac{d(x)}{dx}}{{{x}^{2}}}+a\dfrac{d}{dx}{{\left( a+bx \right)}^{-1}}
d2ydx2=xdydxx2yx2+a(1)(a+bx)11ddx(a+bx)\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\dfrac{dy}{dx}}{{{x}^{2}}}-\dfrac{y}{{{x}^{2}}}+a(-1){{\left( a+bx \right)}^{-1-1}}\dfrac{d}{dx}(a+bx)
d2ydx2=1xdydxyx2ab(a+bx)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}\dfrac{dy}{dx}-\dfrac{y}{{{x}^{2}}}-\dfrac{ab}{{{\left( a+bx \right)}^{2}}}
Now substitute value from equation (iii), we get

d2ydx2=1x(yx+aa+bx)yx2ab(a+bx)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}\left( \dfrac{y}{x}+\dfrac{a}{a+bx} \right)-\dfrac{y}{{{x}^{2}}}-\dfrac{ab}{{{\left( a+bx \right)}^{2}}}
d2ydx2=yx2+ax(a+bx)yx2ab(a+bx)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y}{{{x}^{2}}}+\dfrac{a}{x\left( a+bx \right)}-\dfrac{y}{{{x}^{2}}}-\dfrac{ab}{{{\left( a+bx \right)}^{2}}}
Cancelling the like terms, we get
d2ydx2=ax(a+bx)ab(a+bx)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{a}{x\left( a+bx \right)}-\dfrac{ab}{{{\left( a+bx \right)}^{2}}}
Taking the LCM and solving, we get
d2ydx2=a(a+bx)xabx(a+bx)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{a(a+bx)-xab}{x{{\left( a+bx \right)}^{2}}}
d2ydx2=a2+abxxabx(a+bx)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{a}^{2}}+abx-xab}{x{{\left( a+bx \right)}^{2}}}
Cancelling the like terms, we get
d2ydx2=a2x(a+bx)2=1x(aa+bx)2.........(iv)\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{a}^{2}}}{x{{\left( a+bx \right)}^{2}}}=\dfrac{1}{x}{{\left( \dfrac{a}{a+bx} \right)}^{2}}.........(iv)
Now consider equation (iii),
dydx=yx+aa+bx\dfrac{dy}{dx}=\dfrac{y}{x}+\dfrac{a}{a+bx}
aa+bx=dydxyx\therefore \dfrac{a}{a+bx}=\dfrac{dy}{dx}-\dfrac{y}{x}
Put this value in equation (iv), we get
d2ydx2=1x(dydxyx)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}{{\left( \dfrac{dy}{dx}-\dfrac{y}{x} \right)}^{2}}
Multiply both sides by x3{{x}^{3}}, we get
x3d2ydx2=x3x(dydxyx)2\Rightarrow {{x}^{3}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{x}^{3}}}{x}{{\left( \dfrac{dy}{dx}-\dfrac{y}{x} \right)}^{2}}
x3d2ydx2=x2(dydxyx)2\Rightarrow {{x}^{3}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{x}^{2}}{{\left( \dfrac{dy}{dx}-\dfrac{y}{x} \right)}^{2}}
x3d2ydx2=(xdydxy)2\Rightarrow {{x}^{3}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{\left( x\dfrac{dy}{dx}-y \right)}^{2}}
Hence the correct answer is option (d).

Note: We can also use the formula \dfrac{d}{dx}\left\\{ f{{\left( x \right)}^{g\left( x \right)}} \right\\}=f{{\left( x \right)}^{g\left( x \right)}}\times \dfrac{d}{dx}\left\\{ g(x)\ln \left( f(x) \right) \right\\}
In this method also we will get the same result.