Solveeit Logo

Question

Question: Find the value of λ, where [.] denotes the greatest integer function, and λ = $\left[\frac{10(\sqrt...

Find the value of λ, where [.] denotes the greatest integer function, and

λ = [10(27+0+27+1+27+2+27+3+...+27+729)(27+0+271+272+273+...+27729)]\left[\frac{10(\sqrt{27}+\sqrt{0}+\sqrt{27}+\sqrt{1}+\sqrt{27}+\sqrt{2}+\sqrt{27}+\sqrt{3}+...+\sqrt{27}+\sqrt{729})}{(\sqrt{27}+\sqrt{0}+\sqrt{27}-\sqrt{1}+\sqrt{27}-\sqrt{2}+\sqrt{27}-\sqrt{3}+...+\sqrt{27}-\sqrt{729})}\right]

Answer

-19

Explanation

Solution

  • Let the expression be ND\frac{N}{D}.
  • The numerator part is N=10k=0729(27+k)=10(73027+k=0729k)N = 10 \sum_{k=0}^{729} (\sqrt{27} + \sqrt{k}) = 10 (730\sqrt{27} + \sum_{k=0}^{729} \sqrt{k}).
  • The denominator part is D=(27+0)+k=1729(27k)=73027k=1729kD = (\sqrt{27}+\sqrt{0}) + \sum_{k=1}^{729} (\sqrt{27} - \sqrt{k}) = 730\sqrt{27} - \sum_{k=1}^{729} \sqrt{k}.
  • Let A=73027A = 730\sqrt{27} and Y=k=1729kY = \sum_{k=1}^{729} \sqrt{k}. Note k=0729k=Y\sum_{k=0}^{729} \sqrt{k} = Y.
  • The expression becomes 10(A+Y)AY\frac{10(A+Y)}{A-Y}.
  • We approximate Y0729xdx=23(7293/2)=13122Y \approx \int_0^{729} \sqrt{x} dx = \frac{2}{3} (729^{3/2}) = 13122.
  • A=73027=219033793A = 730\sqrt{27} = 2190\sqrt{3} \approx 3793.
  • Since Y>AY > A, AYA-Y is negative.
  • The fraction is approximately 10(3793+13122)379313122=10(16915)932918.13\frac{10(3793+13122)}{3793-13122} = \frac{10(16915)}{-9329} \approx -18.13.
  • Therefore, λ=[18.13]=19\lambda = [-18.13] = -19.