Solveeit Logo

Question

Question: Find the value of \[\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \df...

Find the value of limx[x4sin(1x)+x2(1+x3)]=?\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]=?

Explanation

Solution

The given problem is related to evaluation of limit of a function. Try to eliminate the trigonometric terms using formulae of limits for trigonometric functions, like limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 . Then, take the variable with highest power common in the numerator and the denominator. Then substitute the limits.

Complete step-by-step answer:
The given limit to be evaluated is limx[x4sin(1x)+x2(1+x3)]\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right] . We know, when x tends to -\infty , 1x\dfrac{1}{x} tends to 0. We also know, we can write x4{{x}^{4}} as x31x\dfrac{{{x}^{3}}}{\dfrac{1}{x}} ………… (i) and limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1……….. (ii) . Now, let the value of the limit be L. So, L=limx[x4sin(1x)+x2(1+x3)]L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right] . Now, from (i), we can write L=limx[x31xsin(1x)+x2(1+x3)]L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{{{x}^{3}}}{\dfrac{1}{x}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]
L=limx[x3sin(1x)1x+x2(1+x3)]\Rightarrow L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}\dfrac{\sin \left( \dfrac{1}{x} \right)}{\dfrac{1}{x}}+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]
Now, from (ii), we know limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 . So, we can write L=limx[x3+x2(1+x3)]L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right] .
Now, as xx\to -\infty , the value of x is negative. So, by the definition of modulus function, we can say x=x\left| x \right|=-x.
x3=x3\Rightarrow {{\left| x \right|}^{3}}=-{{x}^{3}}
1+x3=1x3\Rightarrow 1+{{\left| x \right|}^{3}}=1-{{x}^{3}}
We will substitute the value of 1+x31+{{\left| x \right|}^{3}} in the denominator. So, we get the limit as L=limx[x3+x2(1x3)]L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}+{{x}^{2}}}{\left( 1-{{x}^{3}} \right)} \right] . Now, the function consists of polynomials. So, we will take the variable with the highest power, i.e.x3{{x}^{3}} , common from the numerator as well as the denominator. So, we get:
L=limx[x3(1+1x)x3(1x31)]L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}\left( 1+\dfrac{1}{x} \right)}{{{x}^{3}}\left( \dfrac{1}{{{x}^{3}}}-1 \right)} \right]
L=limx[(1+1x)(1x31)]\Rightarrow L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{\left( 1+\dfrac{1}{x} \right)}{\left( \dfrac{1}{{{x}^{3}}}-1 \right)} \right]
Substituting x=x=-\infty in the limit, we get :
L=1+1131L=\dfrac{1+\dfrac{1}{-\infty }}{\dfrac{1}{-{{\infty }^{3}}}-1}
L=1+001\Rightarrow L=\dfrac{1+0}{0-1}
L=1\Rightarrow L=-1
Hence, the value of the limit is equal to -1.

Note: While solving problems related to limits, try to find out the terms in the function, which can lead to attainment of indeterminate forms and then try to eliminate those terms. Also, while performing simplification or substitution, always take care of sign, Sign mistakes are very common and can lead to incorrect answers.