Solveeit Logo

Question

Question: Find the value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-...

Find the value of limx0x+2sinxx2+2sinx+1xsin2x+1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}} .
(a) 2
(b) 1
(c) 6
(d) 2-2

Explanation

Solution

In this question, we have to evaluate the limit limx0x+2sinxx2+2sinx+1xsin2x+1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}. We will use the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 in the expression x+2sinxx2+2sinx+1xsin2x+1\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}} to simplify the problem. We use the property of rationalizing a function say x+ax+b\dfrac{x+a}{x+b} by multiplying and dividing the expression by xbx-b. Using this we will then rationalize the function
x+2sinxx2+2sinx+1xsin2x+1\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}} by multiplying and dividing the expression x2+2sinx+1+xsin2x+1\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x-{{\sin }^{2}}x+1} to further simplify the problem. We will also use the identity (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}. Also we will be using the limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1. We will then solve to get the desired answer.

Complete step by step answer:
We are given with the limit limx0x+2sinxx2+2sinx+1xsin2x+1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}.
Consider the expression x+2sinxx2+2sinx+1xsin2x+1\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}} whose limit is to be calculated when xx tends to zero.
Since we know the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, that implies
1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x.
Thus on substituting the value 1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x in the given expression x+2sinxx2+2sinx+1xsin2x+1\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}, we will have
x+2sinxx2+2sinx+1xsin2x+1=x+2sinxx2+2sinx+1x+cos2x\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}
Now since we know that in order to rationalize a function say x+ax+b\dfrac{x+a}{x+b} by multiplying and dividing the expression by xbx-b.
we will then rationalize the function
x+2sinxx2+2sinx+1x+cos2x\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}} by multiplying and dividing the expression x2+2sinx+1+x+cos2x\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} to further simplify the problem.
Using this we have
x+2sinxx2+2sinx+1x+cos2x=(x+2sinx)(x2+2sinx+1+x+cos2x)(x2+2sinx+1x+cos2x)(x2+2sinx+1+x+cos2x)\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}since we also know the identity (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.
Using this in the denominator of the above expression, we will get

& \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{\left( \sqrt{{{x}^{2}}+2\sin x+1} \right)}^{2}}-{{\left( \sqrt{x+{{\cos }^{2}}x} \right)}^{2}}} \\\ & =\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( {{x}^{2}}+2\sin x+1 \right)-\left( x+{{\cos }^{2}}x \right)} \end{aligned}$$ On simplifying the denominator of the above equation by substituting $$1-{{\sin }^{2}}x={{\cos }^{2}}x$$ , we will have $$\begin{aligned} & \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x+1-\left( x+1-{{\sin }^{2}}x \right)}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x+1-x-1+{{\sin }^{2}}x} \\\ & =\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x} \end{aligned}$$ Now on dividing the above expression by $$x$$, we will have $$\begin{aligned} & \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}=\dfrac{\dfrac{\left( x+2\sin x \right)}{x}\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \dfrac{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}{x} \right)} \\\ & =\dfrac{\left( \dfrac{x}{x}+2\left( \dfrac{\sin x}{x} \right) \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right) \right)} \\\ & =\dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right)} \end{aligned}$$ Since we know that $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$$. Therefore by taking the $$\underset{x\to 0}{\mathop{\lim }}\,$$ in the above expression we will get $$\begin{aligned} & \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right)} \right)=\dfrac{\left( 1+2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)\left( \underset{x\to 0}{\mathop{\lim }}\,\sqrt{{{x}^{2}}+2\sin x+1}+\underset{x\to 0}{\mathop{\lim }}\,\sqrt{x+{{\cos }^{2}}x} \right)}{\underset{x\to 0}{\mathop{\lim }}\,x+2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}-\underset{x\to 0}{\mathop{\lim }}\,1+\underset{x\to 0}{\mathop{\lim }}\,\sin x\left( \dfrac{\sin x}{x} \right)} \\\ & =\dfrac{\left( 1+2 \right)\left( 1+1 \right)}{0+2-1+0} \\\ & =\dfrac{6}{1} \\\ & =6 \end{aligned}$$Since $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=\underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\dfrac{\sin x}{x}-1+\sin x\left( \dfrac{\sin x}{x} \right)} \right)$$ Therefore we have $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=6$$ **So, the correct answer is “Option C”.** **Note:** In this problem, in order to determine the $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}$$ please take care while rationalizing the expression $$\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}$$ we have multiplying and dividing the expression $$\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x}$$ and not by $$\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}$$.