Solveeit Logo

Question

Question: Find the value of \(\theta \), if \(\dfrac{{\cos \theta }}{{1 - \sin \theta }} + \dfrac{{\cos \the...

Find the value of θ\theta , if
cosθ1sinθ+cosθ1+sinθ=4\dfrac{{\cos \theta }}{{1 - \sin \theta }} + \dfrac{{\cos \theta }}{{1 + \sin \theta }} = 4 , θ90\theta \leqslant {90^ \circ }

Explanation

Solution

First we will take LCM for the simplification of the equation then using formulas like cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta we will get an equation in θ\theta or in the function of θ\theta .
Solving that equation we will get the values of θ\theta hence will obtain the solutions of the given equation.

Complete step-by-step answer:
Given data: cosθ1sinθ+cosθ1+sinθ=4\dfrac{{\cos \theta }}{{1 - \sin \theta }} + \dfrac{{\cos \theta }}{{1 + \sin \theta }} = 4
Solving for the given equation, we get
i.e. cosθ1sinθ+cosθ1+sinθ=4\dfrac{{\cos \theta }}{{1 - \sin \theta }} + \dfrac{{\cos \theta }}{{1 + \sin \theta }} = 4
Taking LCM we get,
cosθ(1+sinθ)(1sinθ)(1+sinθ)+cosθ(1sinθ)(1sinθ)(1+sinθ)=4\Rightarrow \dfrac{{\cos \theta \left( {1 + \sin \theta } \right)}}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}} + \dfrac{{\cos \theta \left( {1 - \sin \theta } \right)}}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}} = 4
Simplifying the numerator as the denominator are equal, we get
cosθ(1+sinθ)+cosθ(1sinθ)(1sinθ)(1+sinθ)=4\Rightarrow \dfrac{{\cos \theta \left( {1 + \sin \theta } \right) + \cos \theta \left( {1 - \sin \theta } \right)}}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}} = 4
Simplifying the brackets we get,
cosθ+sinθcosθ+cosθsinθcosθ(1sinθ)(1+sinθ)=4\Rightarrow \dfrac{{\cos \theta + \sin \theta \cos \theta + \cos \theta - \sin \theta \cos \theta }}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}} = 4
Simplifying the bracket terms in the denominator, we get
2cosθ1sin2θ=4\Rightarrow \dfrac{{2\cos \theta }}{{1 - {{\sin }^2}\theta }} = 4
We know that cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta therefore using this we get,
2cosθcos2θ=4.................(i)\Rightarrow \dfrac{{2\cos \theta }}{{{{\cos }^2}\theta }} = 4.................(i)
Multiplying both sides by cos2θ{\cos ^2}\theta , we get
2cosθ=4cos2θ\Rightarrow 2\cos \theta = 4{\cos ^2}\theta
Dividing both sides by 2, we get
cosθ=2cos2θ.................(ii)\Rightarrow \cos \theta = 2{\cos ^2}\theta .................(ii)
Taking the term on one side we get,
0=2cos2θcosθ\Rightarrow 0 = 2{\cos ^2}\theta - \cos \theta
Now, taking cosθ\cos \theta common from both the terms we get,
0=cosθ(2cosθ1)\Rightarrow 0 = \cos \theta \left( {2\cos \theta - 1} \right)
i.e. 2cosθ1=02\cos \theta - 1 = 0 or cosθ=0\cos \theta = 0
cosθ=12\therefore \cos \theta = \dfrac{1}{2} or cosθ=0\cos \theta = 0
Substituting 12=cos60\dfrac{1}{2} = \cos {60^ \circ }and 0=cos900 = \cos {90^ \circ }, we get

cosθ=cos60 \Rightarrow \cos \theta = \cos {60^ \circ }
On comparing we get,
θ=60\Rightarrow \theta = {60^ \circ }
And cosθ=cos90\cos \theta = \cos {90^ \circ }
On comparing we get,
θ=90\Rightarrow \theta = {90^ \circ }
Therefore the solutions of the given equation will 60and90{60^ \circ }\,and\,\,{90^ \circ }.

Note: Most of the students will cancel out cosθ\cos \theta in the equation(i) or equation(ii) but it will reduce a solution a from the final answer when we cancel out variable terms like this, a solution for the equation reduces as if cancel out cosθ\cos \theta , we would have reduced a solution i.e. cosθ=0\cos \theta = 0, so remember this point always not only for this question but for all the questions in which we have to find the solutions of a given equation as doing this number of real solution reduces.