Solveeit Logo

Question

Question: Find the value of the trigonometric expression \[{\cos ^{ - 1}}\left( {\cos 12} \right) - {\sin ^{ -...

Find the value of the trigonometric expression cos1(cos12)sin1(sin12){\cos ^{ - 1}}\left( {\cos 12} \right) - {\sin ^{ - 1}}\left( {\sin 12} \right).

A.{\text{ }}0 \\\ B.{\text{ }}\pi \\\ C.{\text{ }}8\pi - 24 \\\ $$ $$D.$$ None of these
Explanation

Solution

Hint:

Draw graph of cos1(cosx){\cos ^{ - 1}}\left( {\cos x} \right) and sin1(sinx){\text{si}}{{\text{n}}^{ - 1}}\left( {\sin x} \right).


Now as we can see that,
We have to find the value of cos1(cos12){\cos ^{ - 1}}\left( {\cos 12} \right) and sin1(sin12){\text{si}}{{\text{n}}^{ - 1}}\left( {\sin 12} \right) from the above graph.
So, xx will be equal to 12 in the above graphs.
Now as we can see from the above graphs of cos1(cosx){\cos ^{ - 1}}\left( {\cos x} \right) and sin1(sinx){\text{si}}{{\text{n}}^{ - 1}}\left( {\sin x} \right),
That principle range of cos1(cosx){\cos ^{ - 1}}\left( {\cos x} \right) and sin1(sinx){\text{si}}{{\text{n}}^{ - 1}}\left( {\sin x} \right) is [0,2π]\left[ {0,2\pi } \right].
So, we have to change 12 in terms of π\pi
Now as we know that, π=3.14\pi = 3.14.
So, 4π=4(3.14)=12.56>124\pi = 4*(3.14) = 12.56 > 12
3π=3(3.14)=9.42<123\pi = 3*(3.14) = 9.42 < 12
And, 7π2=7(3.14)2=10.99<12\dfrac{{7\pi }}{2} = \dfrac{{7*(3.14)}}{2} = 10.99 < 12
So, 7π2<12<4π\dfrac{{7\pi }}{2} < 12 < 4\pi
So, according to the graph drawn above.
Value of cos1(cos12){\cos ^{ - 1}}\left( {\cos 12} \right) will be 4πx4\pi - x, where x=12x = 12
And, value of sin1(sin12){\text{si}}{{\text{n}}^{ - 1}}\left( {\sin 12} \right) will be x4πx - 4\pi , where x=12x = 12.
So, cos1(cos12)=4π12{\cos ^{ - 1}}\left( {\cos 12} \right) = 4\pi - 12 (1)
And, sin1(sin12)=124π{\sin ^{ - 1}}\left( {\sin 12} \right) = 12 - 4\pi (2)
Now, subtracting equation 1 and 2. We get,
cos1(cos12)sin1(sin12)=8π24{\cos ^{ - 1}}\left( {\cos 12} \right) - {\sin ^{ - 1}}\left( {\sin 12} \right) = 8\pi - 24
Hence, the correct option will be C.

Note:

Whenever we came up with this type of question then we first draw the graph of each trigonometric function. And then find the range in which value of xx lies.
After that we can get values of trigonometric functions from the graph. Which can be then manipulated to get the required value of the given equation.