Solveeit Logo

Question

Question: Find the value of the trigonometric expression \((1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta \) ...

Find the value of the trigonometric expression (1+tan2θ)sin2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta
a. sin2θ{\sin ^2}\theta
b. cos2θ{\cos ^2}\theta
c. tan2θ{\tan ^2}\theta
d. cot2θ{\cot ^2}\theta

Explanation

Solution

Hint: Trigonometric identities like sin²θ+cos²θ=1 can be used to rewrite expressions in a different, more convenient way. For example, (1cos2θ)(sin2θ)(1 - {\cos ^2}\theta )({\sin ^2}\theta ) can be rewritten as (sin2θ)(sin2θ)({\sin ^2}\theta )({\sin ^2}\theta ) and then as (sin4θ)({\sin ^4}\theta ). In this question, we can use trigonometric identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 and for alternative method 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta .

Complete step-by-step answer:

Let us consider the trigonometric expression
(1+tan2θ)sin2θ=[1+(tanθ)2]sin2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = \left[ {1 + {{(\tan \theta )}^2}} \right] \cdot {\sin ^2}\theta

We know that the trigonometric function tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, we get
(1+tan2θ)sin2θ=[1+(sinθcosθ)2]sin2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = \left[ {1 + {{\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}^2}} \right] \cdot {\sin ^2}\theta

By using the formula (ab)2=a2b2{\left( {\dfrac{a}{b}} \right)^2} = \dfrac{{{a^2}}}{{{b^2}}} , then the left hand side is as follow
(1+tan2θ)sin2θ=[1+(sinθ)2(cosθ)2]sin2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = \left[ {1 + \dfrac{{{{(\sin \theta )}^2}}}{{{{(\cos \theta )}^2}}}} \right] \cdot {\sin ^2}\theta

Now, the trigonometric functions are (sinθ)2=sin2θ{(\sin \theta )^2} = {\sin ^2}\theta and (cosθ)2=cos2θ{(\cos \theta )^2} = {\cos ^2}\theta , then the trigonometric expression is given by
(1+tan2θ)sin2θ=[1+sin2θcos2θ]sin2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = \left[ {1 + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right] \cdot {\sin ^2}\theta
(1+tan2θ)sin2θ=[cos2θ+sin2θcos2θ]sin2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = \left[ {\dfrac{{{{\cos }^2}\theta + {{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right] \cdot {\sin ^2}\theta

Applying the trigonometric identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1, we get
(1+tan2θ)sin2θ=[1cos2θ]sin2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = \left[ {\dfrac{1}{{{{\cos }^2}\theta }}} \right] \cdot {\sin ^2}\theta

The rearranging the terms, we get
(1+tan2θ)sin2θ=sin2θcos2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}

By using the formula a2b2=(ab)2\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}, then left hand side term of the trigonometric expression is as follow
(1+tan2θ)sin2θ=(sinθcosθ)2(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)^2}

Again, we use the trigonometric function tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.
(1+tan2θ)sin2θ=(tanθ)2(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = {\left( {\tan \theta } \right)^2}
The trigonometric functions (tanθ)2{(\tan \theta )^2} and tan2θ{\tan ^2}\theta both are the same.

Thus, the trigonometric expression is (1+tan2θ)sin2θ=tan2θ(1 + {\tan ^2}\theta ) \cdot {\sin ^2}\theta = {\tan ^2}\theta .

Hence the correct option of the given question is option (c).

Note: Alternatively this question is solved as follows-
We know that the trigonometric second identity sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta , then the given trigonometric expression is (sec2θ)sin2θ({\sec ^2}\theta ) \cdot {\sin ^2}\theta .

Again, we use the trigonometric function sec2θ=1cos2θ{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }} and then the given trigonometric expression is (1cos2θ)sin2θ\left( {\dfrac{1}{{{{\cos }^2}\theta }}} \right) \cdot {\sin ^2}\theta .

Finally, the trigonometric function (sin2θcos2θ)\left( {\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right) is tan2θ{\tan ^2}\theta .

Hence the correct option of the given question is option (c).