Solveeit Logo

Question

Question: Find the value of the trigonometric expression \[\tan \left( {{360}^{{}^\circ \;}}-A \right)\]....

Find the value of the trigonometric expression tan(360  A)\tan \left( {{360}^{{}^\circ \;}}-A \right).

Explanation

Solution

Hint: Use the relation tan(x)=sin(x)cos(x)\tan \left( x \right)=\dfrac{\sin \left( x \right)}{\cos \left( x \right)} and the expansion formula sin(st)=cos(s)sin(t)+cos(t)sin(s)\sin \left( s-t \right)=-\cos \left( s \right)\sin \left( t \right)+\cos \left( t \right)\sin \left( s \right) andcos(st)=cos(s)cos(t)+sin(s)sin(t)\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right), then simplify to get the required value of tan(360  A)\tan \left( {{360}^{{}^\circ \;}}-A \right).

Complete step-by-step solution -
In the question, we have to find the value of the trigonometric expression tan(360  A)\tan \left( {{360}^{{}^\circ \;}}-A \right).
Now we will use the relation tan(x)=sin(x)cos(x)\tan \left( x \right)=\dfrac{\sin \left( x \right)}{\cos \left( x \right)} and we get:
tan(360  A)=sin(A+360  )cos(A+360  )\Rightarrow \tan \left( {{360}^{{}^\circ \;}}-A \right)=\dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}
Next we will apply the expansion formula of sin(st)=cos(s)sin(t)+cos(t)sin(s)\sin \left( s-t \right)=-\cos \left( s \right)\sin \left( t \right)+\cos \left( t \right)\sin \left( s \right) and cos(st)=cos(s)cos(t)+sin(s)sin(t)\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right). Which will give us;

& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\cos \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)+\cos \left( A \right)\sin \left( {{360}^{{}^\circ \;}} \right)}{\cos \left( {{360}^{{}^\circ \;}}-A \right)} \\\ & \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\cos \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)+\cos \left( A \right)\sin \left( {{360}^{{}^\circ \;}} \right)}{\cos \left( {{360}^{{}^\circ \;}} \right)\cos \left( A \right)+\sin \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)} \\\ & \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\sin \left( A \right)+0}{\cos \left( A \right)+0}\,\,\,\,\,\,\,\,\,\,\,\,\because \sin \left( {{360}^{{}^\circ \;}} \right)=0,\,\,\cos \left( {{360}^{{}^\circ \;}} \right)=1 \\\ & \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\sin \left( A \right)}{\cos \left( A \right)} \\\ & \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=-\tan \left( A \right) \\\ \end{aligned}$$ So finally, we can say that $$\tan \left( {{360}^{{}^\circ \;}}-A \right)=-\tan \left( A \right)$$. So this is the required value. Note: The alternate way to solve this problem is by using the direct formula that says $$\tan \left( {{360}^{{}^\circ \;}}-\theta \right)=-\tan \left( \theta \right)$$. Here we can also use directly the formula of tangent of difference of two angles like $\tan(A-B) = \dfrac{\tan A - \tan B}{1+ \tan A \tan B}$ where A = ${360}^\circ$ and B = A. For Such type of trigonometric problem we have many approaches and we get the same answer if we apply correctly all the trigonometric formulas and identities.