Question
Question: Find the value of the trigonometric expression \[\tan \left( {{360}^{{}^\circ \;}}-A \right)\]....
Find the value of the trigonometric expression tan(360∘−A).
Explanation
Solution
Hint: Use the relation tan(x)=cos(x)sin(x) and the expansion formula sin(s−t)=−cos(s)sin(t)+cos(t)sin(s) andcos(s−t)=cos(s)cos(t)+sin(s)sin(t), then simplify to get the required value of tan(360∘−A).
Complete step-by-step solution -
In the question, we have to find the value of the trigonometric expression tan(360∘−A).
Now we will use the relation tan(x)=cos(x)sin(x) and we get:
⇒tan(360∘−A)=cos(−A+360∘)sin(−A+360∘)
Next we will apply the expansion formula of sin(s−t)=−cos(s)sin(t)+cos(t)sin(s) and cos(s−t)=cos(s)cos(t)+sin(s)sin(t). Which will give us;