Solveeit Logo

Question

Question: Find the value of the sum\(\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}\), where \(i=\sqrt{-1}\)....

Find the value of the sumn=113(in+in+1)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}, where i=1i=\sqrt{-1}.
(a) ii
(b) i1i-1
(c) i-i
(d) 0

Explanation

Solution

Hint: In this question, you can use the concept of power of Iota. Iota is square root of minus 1 means1\sqrt{-1}. For example, what is the value of Iota's power 3? Iota i=1i=\sqrt{-1} so i2{{i}^{2}} is 1×1=1\sqrt{-1}\times \sqrt{-1}=-1 and hencei3=i2×i=i{{i}^{3}}={{i}^{2}}\times i=-i.
A series can be represented in a compact form, called summation or sigma notation. The Greek capital letter \sum is used to represent the sum.

Complete step-by-step answer:
Let us consider the given summation,
n=113(in+in+1)=n=113(1+i)in\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=\sum\limits_{n=1}^{13}{(1+i){{i}^{n}}}
n=113(in+in+1)=(1+i)n=113in=(1+i)(i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\sum\limits_{n=1}^{13}{{{i}^{n}}}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)
n=113(in+in+1)=(1+i)(i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)
By using the power of iota concept, we get
n=113(in+in+1)=(1+i)(i1i+1+i1i+1+i1i+1+i)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i-1-i+1+i-1-i+1+i-1-i+1+i \right)
Cancelling the common terms, we get
n=113(in+in+1)=(1+i)i\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i
Open the brackets and multiply by I on the right side, we get
n=113(in+in+1)=i+i2\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i+{{i}^{2}}
We know that, i2=1{{i}^{2}}=-1
n=113(in+in+1)=i1\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i-1
Hence, the value of the sum n=113(in+in+1)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})} is i1i-1.
Therefore, the correct option for the given question is option (b)

Note: Alternatively, the question is solved as follows
Let us consider the summation,
n=113(in+in+1)=n=113(1+i)in\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=\sum\limits_{n=1}^{13}{(1+i){{i}^{n}}}
n=113(in+in+1)=(1+i)n=113in=(1+i)(i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\sum\limits_{n=1}^{13}{{{i}^{n}}}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)
n=113(in+in+1)=(1+i)(i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+{{i}^{6}}+{{i}^{7}}+{{i}^{8}}+{{i}^{9}}+{{i}^{10}}+{{i}^{11}}+{{i}^{12}}+{{i}^{13}} \right)
The second term is a geometric progression on right side and we have to find the summation by using the formula
Sn=a(rn1r1),r>1{{S}_{n}}=a\left( \dfrac{{{r}^{n}}-1}{r-1} \right),r>1
n=113(in+in+1)=(1+i)i(i131i1)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i\left( \dfrac{{{i}^{13}}-1}{i-1} \right)
We have i13=i{{i}^{13}}=i
n=113(in+in+1)=(1+i)i(i1i1)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i\left( \dfrac{i-1}{i-1} \right)
Cancelling the same terms , we get
n=113(in+in+1)=(1+i)i\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=(1+i)i
Open the brackets and multiply by I on the right side, we get
n=113(in+in+1)=i+i2\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i+{{i}^{2}}
We know that, i2=1{{i}^{2}}=-1
n=113(in+in+1)=i1\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})}=i-1
Hence, the value of the sum n=113(in+in+1)\sum\limits_{n=1}^{13}{({{i}^{n}}+{{i}^{n+1}})} is i1i-1.
Therefore, the correct option for the given question is option (b)