Solveeit Logo

Question

Question: Find the value of the sum of the trigonometric functions \( \cot x+\cot \left( {{60}^{o}}+x \right)+...

Find the value of the sum of the trigonometric functions cotx+cot(60o+x)+cot(120o+x)\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) ?
(a) cot3x\cot 3x
(b) tan3x\tan 3x
(c) 3tan3x3\tan 3x
(d) 39tan2x3tanxtan3x\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}

Explanation

Solution

Hint : We start solving problem by using the result cot(A+B)=cot(A).cot(B)1cot(A)+cot(B)\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)} for the terms given in cotx+cot(60o+x)+cot(120o+x)\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) . We substitute the values required in the equations obtained and we get the answer in cotangent functions. Since the given options are present in tangent functions, we use the fact that the tangent function is inverse of the cotangent function to get the final answer.

Complete step-by-step answer :
Given that we need to find the value of cotx+cot(60o+x)+cot(120o+x)\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) . Let us assume the value is ‘y’.
We have got y=cotx+cot(60o+x)+cot(120o+x)y=\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) ---(1).
We know that cot(A+B)=cot(A).cot(B)1cot(A)+cot(B)\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)}. Let us substitute this in equation (1).
So, we have got y=cotx+cot(60o).cotx1cot(60o)+cotx+cot(120o).cotx1cot(120o)+cotxy=\cot x+\dfrac{\cot \left( {{60}^{o}} \right).\cot x-1}{\cot \left( {{60}^{o}} \right)+\cot x}+\dfrac{\cot \left( {{120}^{o}} \right).\cot x-1}{\cot \left( {{120}^{o}} \right)+\cot x} ---(2).
We know that the values of cot(60o)\cot \left( {{60}^{o}} \right) and cot(120o)\cot \left( {{120}^{o}} \right) are 13\dfrac{1}{\sqrt{3}} and 13\dfrac{-1}{\sqrt{3}} . Let us substitute these in equation (2).
\Rightarrow y=cotx+13.cotx113+cotx+13.cotx113+cotxy=\cot x+\dfrac{\dfrac{1}{\sqrt{3}}.\cot x-1}{\dfrac{1}{\sqrt{3}}+\cot x}+\dfrac{\dfrac{-1}{\sqrt{3}}.\cot x-1}{\dfrac{-1}{\sqrt{3}}+\cot x} .
\Rightarrow y=cotx+cotx331+3cotx3+cotx331+3cotx3y=\cot x+\dfrac{\dfrac{\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{1+\sqrt{3}\cot x}{\sqrt{3}}}+\dfrac{\dfrac{-\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{-1+\sqrt{3}\cot x}{\sqrt{3}}} .
\Rightarrow y=cotx+cotx31+3cotx+cotx31+3cotxy=\cot x+\dfrac{\cot x-\sqrt{3}}{1+\sqrt{3}\cot x}+\dfrac{-\cot x-\sqrt{3}}{-1+\sqrt{3}\cot x} .
\Rightarrow y=cotx+((cotx3)×(1+3cotx))+((cotx3)×(1+3cotx))(1+3cotx)×(1+3cotx)y=\cot x+\dfrac{\left( \left( \cot x-\sqrt{3} \right)\times \left( -1+\sqrt{3}\cot x \right) \right)+\left( \left( -\cot x-\sqrt{3} \right)\times \left( 1+\sqrt{3}\cot x \right) \right)}{\left( 1+\sqrt{3}\cot x \right)\times \left( -1+\sqrt{3}\cot x \right)}.
\Rightarrow y=cotx+(cotx+3cot2x+33cotx)+(cotx33cot2x3cotx)1+3cotx3cotx+3cot2xy=\cot x+\dfrac{\left( -\cot x+\sqrt{3}{{\cot }^{2}}x+\sqrt{3}-3\cot x \right)+\left( -\cot x-\sqrt{3}-\sqrt{3}{{\cot }^{2}}x-3\cot x \right)}{-1+\sqrt{3}\cot x-\sqrt{3}\cot x+3{{\cot }^{2}}x}.
\Rightarrow y=cotx+8cotx1+3cot2xy=\cot x+\dfrac{-8\cot x}{-1+3{{\cot }^{2}}x}.
\Rightarrow y=(cotx×(1+3cot2x))+(8cotx)1+3cot2xy=\dfrac{\left( \cot x\times \left( -1+3{{\cot }^{2}}x \right) \right)+\left( -8\cot x \right)}{-1+3{{\cot }^{2}}x}.
\Rightarrow y=cotx+3cot3x8cotx1+3cot2xy=\dfrac{-\cot x+3{{\cot }^{3}}x-8\cot x}{-1+3{{\cot }^{2}}x}.
\Rightarrow y=3cot3x9cotx1+3cot2xy=\dfrac{3{{\cot }^{3}}x-9\cot x}{-1+3{{\cot }^{2}}x}.
\Rightarrow y=3cot3x9cotx3cot2x1y=\dfrac{3{{\cot }^{3}}x-9\cot x}{3{{\cot }^{2}}x-1}---(3).
We know that cotx=1tanx\cot x=\dfrac{1}{\tan x} . Let us substitute this in equation (3).
\Rightarrow y=(3tan3x)(9tanx)1+(3tan2x)y=\dfrac{\left( \dfrac{3}{{{\tan }^{3}}x} \right)-\left( \dfrac{9}{\tan x} \right)}{-1+\left( \dfrac{3}{{{\tan }^{2}}x} \right)}.
\Rightarrow y=(39tan2xtan3x)(tan2x+3tan2x)y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{{{\tan }^{3}}x} \right)}{\left( \dfrac{-{{\tan }^{2}}x+3}{{{\tan }^{2}}x} \right)}.
\Rightarrow y=(39tan2xtanx)tan2x+3y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{\tan x} \right)}{-{{\tan }^{2}}x+3}.
\Rightarrow y=39tan2x(tanx)×(tan2x+3)y=\dfrac{3-9{{\tan }^{2}}x}{\left( \tan x \right)\times \left( -{{\tan }^{2}}x+3 \right)}.
\Rightarrow y=39tan2x3tanxtan3xy=\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}.
∴ The value of cotx+cot(60o+x)+cot(120o+x)\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) is 39tan2x3tanxtan3x\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}.
So, the correct answer is “Option D”.

Note : Alternatively, we can check the options by assigning a value for ‘x’ which is between 0o{{0}^{o}} and 90o{{90}^{o}}. Similarly, we can expect tangent, cosine and sine functions instead of given cotangent functions. Whatever the trigonometric function provided in the problem, we start and solve the problem by using the same procedure.