Question
Question: Find the value of the series \(x{{\log }_{e}}a+\dfrac{{{x}^{3}}}{3!}{{\left( {{\log }_{e}}a \right)}...
Find the value of the series x{{\log }_{e}}a+\dfrac{{{x}^{3}}}{3!}{{\left( {{\log }_{e}}a \right)}^{3}}+\dfrac{{{x}^{5}}}{5!}{{\left( {{\log }_{e}}a \right)}^{5}}+...$$$$$
A. \cosh \left( x{{\log }{e}}a \right)
B. $\coth \left( x{{\log }_{e}}a \right)
C \sinh \left( x{{\log }_{e}}a \right)$$$$$
D. \tanh \left( x{{\log }{e}}a \right)$$$$$
Solution
Use the exponential series ex=1+x+2!x2+3!x3+... and the definition of hyperbolic trigonometric functions (sinhx=2ex−e−x,coshx=2ex+e−x) to test whether Option A and C is correct. Use the Taylor series expansion whether option B and D is correct. $$$$
Complete step-by-step answer :
We know that the base of natural logarithm e is defined as e=n→0lim(1+n1)n. We take some real number x and for some n>1 we use the expansion of (1+n1)nx. So