Solveeit Logo

Question

Question: Find the value of the series given below. \[2 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + ...

Find the value of the series given below.
2+52!.3+5.73!.32+5.7.94!.33+.......2 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + .......

Explanation

Solution

Hint:- Use the expansion of (1+x)n{(1 + x)^n}, where n is negative.

As, we are given with the series
y=2+52!.3+5.73!.32+5.7.94!.33+......\Rightarrow y = 2 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + ...... (1)
So, the series at equation 1 can be written as,
y=1+1+52!.3+5.73!.32+5.7.94!.33+...... \Rightarrow y = 1 + 1 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + ......{\text{ }} (2)
Now, we know that when we had to find the value of any typical series,
Then we try to manipulate the series into the expansion of a known function.
So, we had to manipulate the series at equation 2.
Above series can be manipulated as,
y=1+32.23+32.522!.2232+32.52.723!.2333+32.52.72.924!.2434+......\Rightarrow y = 1 + \dfrac{3}{2}.\dfrac{2}{3} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}}}{{2!}}.\dfrac{{{2^2}}}{{{3^2}}} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}.\dfrac{7}{2}}}{{3!}}.\dfrac{{{2^3}}}{{{3^3}}} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}.\dfrac{7}{2}.\dfrac{9}{2}}}{{4!}}.\dfrac{{{2^4}}}{{{3^4}}} + ...... (3)
Now, as we know that the expansion of (1+x)n{\left( {1 + x} \right)^n}, where n is negative is,
(1+x)n=1+n1!x+n(n1)2!x2+n(n1)(n2)3!x3+....\Rightarrow {(1 + x)^n} = 1 + \dfrac{n}{{1!}}x + \dfrac{{n(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ....
As, we can see clearly that in the expansion of (1+x)n{(1 + x)^n},
\RightarrowIf we put x=23x = \dfrac{{ - 2}}{3} and  n=32{\text{ }}n = \dfrac{{ - 3}}{2}. Then it becomes the series given in equation 3.
\RightarrowSo, series given in equation 3 is the expansion of (123)32=(13)32=(3)32=33{\left( {1 - \dfrac{2}{3}} \right)^{\dfrac{{ - 3}}{2}}} = {\left( {\dfrac{1}{3}} \right)^{\dfrac{{ - 3}}{2}}} = {\left( 3 \right)^{\dfrac{3}{2}}} = 3\sqrt 3 .
\RightarrowSo, y=33y = 3\sqrt 3
\RightarrowHence, the value of the given series will be 33{\text{3}}\sqrt 3 .
Note:- Whenever we came up with this type of problem then try to
manipulate the series into the expansion of a known function and then we can
the series in terms of that function. As this will be the easiest and efficient way
to find the solution to the problem.