Question
Question: Find the value of the limit of the expression \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sq...
Find the value of the limit of the expression x→0limx2((1−cosx)+(1−cosx)+(1−cosx)+...∞)−1 equals to?
A). 0
B). 21
C). 1
D). 2
Solution
First to simplify the question part to solve further, we will assume
y = $$$$\sqrt {\left( {1 - \left. {\cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + ...\infty } } } \right.} . This will imply (1−cosx)+y=y. Solve this equation further for y. Now, Put the values of y in the given equation part. Further we will simplify the equation, if needed, to make the value of the limit defined i.e., make the denominator part non-zero by rationalization method.
Formula Used:
1−cosθ=2sin22θ
x→0limxsinx=1
Multiplicative property of limit: x→alimf(x).g(x)=x→alimf(x)×x→alimg(x)
Complete step-by-step solution:
x→0limx2((1−cosx)+(1−cosx)+(1−cosx)+...∞)−1
Let us assume y = $$$$\sqrt {\left( {1 - \left. {\cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + ...\infty } } } \right.}
⇒y=(1−cosx)+y
Squaring on both sides, we get
y2=(1−cosx)+y
⇒y2−y+(cosx−1)=0.......(1)
By comparing equation (1) with the standard form of quadratic equation i.e., ax2+bx+c=0, we get,
Solving this quadratic equation for the values of yusing Discriminant,
y=2a−b±b2−4ac
Putting the values of a,band cfrom equation (1), we get,
y=2(1)−(−1)±(−1)2−4(1)(cosx−1)
⇒y=21±5−4cosx
Substitute the value of y=21+5−4cosx in the given function,
x→0limx2(21+5−4cosx)−1
Simplifying it, we get
Simplifying it further using rationalization,
x→0lim(2x25−4cosx−1×5−4cosx+15−4cosx+1) ⇒x→0lim2x2(5−4cosx+1)5−4cosx−1 ⇒x→0lim2x2(5−4cosx+1)4(1−cosx)Using the identity,
x→0lim2x2(5−4cosx+1)4(2sin22x) …….[∵1−cosθ=2sin22θ]
⇒x→0limx2(5−4cosx+1)4sin22x
Using multiplicative property of limit,
⇒x→0limx24sin22x×x→0lim(5−4cosx+1)1 [∵x→alimf(x).g(x)=x→alimf(x)×x→alimg(x)]
⇒x→0lim(2x)2sin22x×x→0lim(5−4cosx+1)1
Using the identity of limit,
(1)2×x→0lim(5−4cosx+1)1 [∵x→0limxsinx=1]
Put the final limit,