Solveeit Logo

Question

Question: Find the value of the limit of the expression \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sq...

Find the value of the limit of the expression limx0((1cosx)+(1cosx)+(1cosx)+...)1x2\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {\left( {1 - \left. {\cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + ...\infty } } } \right.} } \right) - 1}}{{{x^2}}} equals to?
A). 00
B). 12\dfrac{1}{2}
C). 11
D). 22

Explanation

Solution

First to simplify the question part to solve further, we will assume
y = $$$$\sqrt {\left( {1 - \left. {\cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + ...\infty } } } \right.} . This will imply (1cosx)+y=y\sqrt {\left( {1 - \cos x} \right) + y} = y. Solve this equation further for yy. Now, Put the values of yy in the given equation part. Further we will simplify the equation, if needed, to make the value of the limit defined i.e., make the denominator part non-zero by rationalization method.
Formula Used:
1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}
limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1
Multiplicative property of limit: limxaf(x).g(x)=limxaf(x)×limxag(x)\mathop {\lim }\limits_{x \to a} f\left( x \right).g(x) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \times \mathop {\lim }\limits_{x \to a} g\left( x \right)

Complete step-by-step solution:
limx0((1cosx)+(1cosx)+(1cosx)+...)1x2\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {\left( {1 - \left. {\cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + ...\infty } } } \right.} } \right) - 1}}{{{x^2}}}
Let us assume y = $$$$\sqrt {\left( {1 - \left. {\cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + \sqrt {\left( {1 - \cos x} \right) + ...\infty } } } \right.}
y=(1cosx)+y\Rightarrow y = \sqrt {\left( {1 - \cos x} \right) + y}
Squaring on both sides, we get
y2=(1cosx)+y{y^2} = \left( {1 - \cos x} \right) + y
y2y+(cosx1)=0            .......(1)\Rightarrow {y^2} - y + \left( {\cos x - 1} \right) = 0\;\;\;\;\;\;.......(1)
By comparing equation (1) with the standard form of quadratic equation i.e., ax2+bx+c=0a{x^2} + bx + c = 0, we get,

a=1, b=1, c=cosx1  a = 1, \\\ b = - 1, \\\ c = \cos x - 1 \\\

Solving this quadratic equation for the values of yyusing Discriminant,
y=b±b24ac2ay = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Putting the values of a,ba,band ccfrom equation (1), we get,
y=(1)±(1)24(1)(cosx1)2(1)y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4(1)(\cos x - 1)} }}{{2(1)}}
y=1±54cosx2\Rightarrow y = \dfrac{{1 \pm \sqrt {5 - 4\cos x} }}{2}
Substitute the value of y=1+54cosx2y = \dfrac{{1 + \sqrt {5 - 4\cos x} }}{2} in the given function,
limx0(1+54cosx2)1x2\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{1 + \sqrt {5 - 4\cos x} }}{2}} \right) - 1}}{{{x^2}}}
Simplifying it, we get

limx01+54cosx22x2 limx054cosx12x2  \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{1 + \sqrt {5 - 4\cos x} - 2}}{2}}}{{{x^2}}} \\\ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {5 - 4\cos x} - 1}}{{2{x^2}}} \\\

Simplifying it further using rationalization,

limx0(54cosx12x2×54cosx+154cosx+1) limx054cosx12x2(54cosx+1) limx04(1cosx)2x2(54cosx+1)  \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sqrt {5 - 4\cos x} - 1}}{{2{x^2}}} \times \dfrac{{\sqrt {5 - 4\cos x} + 1}}{{\sqrt {5 - 4\cos x} + 1}}} \right) \\\ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{5 - 4\cos x - 1}}{{2{x^2}\left( {\sqrt {5 - 4\cos x} + 1} \right)}} \\\ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{4\left( {1 - \cos x} \right)}}{{2{x^2}\left( {\sqrt {5 - 4\cos x} + 1} \right)}} \\\

Using the identity,
limx04(2sin2x2)2x2(54cosx+1)\mathop {\lim }\limits_{x \to 0} \dfrac{{4\left( {2{{\sin }^2}\dfrac{x}{2}} \right)}}{{2{x^2}\left( {\sqrt {5 - 4\cos x} + 1} \right)}} …….[1cosθ=2sin2θ2]\left[ {\because 1 - \cos \theta = 2{{\sin }^2}\dfrac{\theta }{2}} \right]
limx04sin2x2x2(54cosx+1)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^2}\dfrac{x}{2}}}{{{x^2}\left( {\sqrt {5 - 4\cos x} + 1} \right)}}
Using multiplicative property of limit,
limx04sin2x2x2×limx01(54cosx+1)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^2}\dfrac{x}{2}}}{{{x^2}}} \times \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\left( {\sqrt {5 - 4\cos x} + 1} \right)}} [limxaf(x).g(x)=limxaf(x)×limxag(x)]\left[ {\because \mathop {\lim }\limits_{x \to a} f\left( x \right).g(x) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \times \mathop {\lim }\limits_{x \to a} g\left( x \right)} \right]
limx0sin2x2(x2)2×limx01(54cosx+1)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\dfrac{x}{2}} \right)}^2}}} \times \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\left( {\sqrt {5 - 4\cos x} + 1} \right)}}
Using the identity of limit,
(1)2×limx01(54cosx+1){(1)^2} \times \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\left( {\sqrt {5 - 4\cos x} + 1} \right)}} [limx0sinxx=1]\left[ {\because \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1} \right]
Put the final limit,

\sqrt {5 - 4\cos \left( 0 \right)} + 1 \\\ \Rightarrow \dfrac{1}{{\sqrt 1 + 1}} \\\ }$$ $$ = \dfrac{1}{2}$$ **Hence, the Final Answer: C. $$\dfrac{1}{2}$$** **Note:** If we directly put the limit in the given question, we will get the indeterminate form i.e. we get a zero in denominator. So, to solve further we have to simplify the numerator part. Also, if we take$$y = \dfrac{{1 - \sqrt {5 - 4\cos x} }}{2}$$, then again we get the indeterminate form after putting the limits to the function. So, we will not consider this value of $$y$$. Alternatively, this problem can be solved using L-Hospital’s Rule, which states: Suppose, we have one of the following cases: $$\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}$$or $$\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{ \pm \infty }}{{ \pm \infty }}$$, where $$a$$can be any real number or even $$ \pm \infty $$. In these cases, $$\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}$$, where $$f'\left( x \right)\& g'\left( x \right)$$represents the derivatives of $$f(x)\& g(x)$$respectively.