Solveeit Logo

Question

Question: Find the value of the limit \(\mathop {\lim }\limits_{x \to 1} \dfrac{{x\sin \left( {x - [x]} \right...

Find the value of the limit limx1xsin(x[x])x1\mathop {\lim }\limits_{x \to 1} \dfrac{{x\sin \left( {x - [x]} \right)}}{{x - 1}}, where [.] denotes the greatest integer function.
A.0
B.-1
C.Non-existence
D.None of these

Explanation

Solution

Hint : In this question, we need to evaluate the value of the given function such that [.] denotes the greatest integer function. For this, we will use the relation of the left-hand limit and the right-hand limit for the given function.

Complete step-by-step answer :
To determine the limit of the function limx1xsin(x[x])x1\mathop {\lim }\limits_{x \to 1} \dfrac{{x\sin \left( {x - [x]} \right)}}{{x - 1}}, we need to evaluate the left-hand limit and the right-hand limit of the function and if the result is equal then, equate the result to determine the resultant value.
The value of the left-hand limit of the function at x=1 is defined as f(x)f\left( {{x^ - }} \right) so, the value of the function at x=1hx = 1 - h where h is infinitesimally small and is tending to zero is given by
f(x)=limx1(xsin(x[x])x1) =limh0((1h)sin((1h)[1h])(1h)1)  f\left( {{x^ - }} \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\dfrac{{x\sin \left( {x - [x]} \right)}}{{x - 1}}} \right) \\\ = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{(1 - h)\sin \left( {(1 - h) - [1 - h]} \right)}}{{(1 - h) - 1}}} \right) \\\
As, the value of h is infinitesimally small so, the greatest integer of the term [1-h] will be zero. So,
f(x)=limh0((1h)sin((1h))h) =(sin(1)0) =(i)  f\left( {{x^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{(1 - h)\sin \left( {(1 - h)} \right)}}{{ - h}}} \right) \\\ = \left( {\dfrac{{\sin \left( 1 \right)}}{{ - 0}}} \right) \\\ = \infty - - - - (i) \\\
The value of the right-hand limit of the function at x=1 is defined as f(x+)f\left( {{x^ + }} \right) so, the value of the function at x=1+hx = 1 + h where h is infinitesimally small and is tending to zero is given by
f(x+)=limx1+(xsin(x[x])x1) =limh0((1+h)sin((1+h)[1+h])(1+h)1)  f\left( {{x^ + }} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\dfrac{{x\sin \left( {x - [x]} \right)}}{{x - 1}}} \right) \\\ = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{(1 + h)\sin \left( {(1 + h) - [1 + h]} \right)}}{{(1 + h) - 1}}} \right) \\\
As, the value of h is infinitesimally small so, the greatest integer of the term [1+h] will be one. So,
f(x+)=limh0((1+h)sin((1+h)1)h) =limh0(sin(h)h) =1(ii)  f\left( {{x^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{(1 + h)\sin \left( {(1 + h) - 1} \right)}}{h}} \right) \\\ = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( h \right)}}{h}} \right) \\\ = 1 - - - - (ii) \\\
From the equations (i) and (ii) we can see that the value of the functions at the left-hand limit is equal to the value of the function at the right-hand limits so, the given function is not continuous at x=1.
Hence, the limits of the function limx1xsin(x[x])x1\mathop {\lim }\limits_{x \to 1} \dfrac{{x\sin \left( {x - [x]} \right)}}{{x - 1}} do not exist.

So, the correct answer is “Option C”.

Note : Students must note here that for the limit of the function to exists, the left-hand limit of the function must be equal to the right-hand limit of the function. Here, as the left-hand limit does not equal to the right-hand limit, then we can say that the limit does not exist at all.