Question
Question: Find the value of the \[{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}\], If (\[x+iy=\sqrt{\dfrac{a+ib}{...
Find the value of the (x2+y2)2, If (x+iy=c+ida+ib.
(a). c2+d2a2+b2
(b). c+da+b
(c).a2+b2c2+d2
(d). (c2+d2a2+b2)2
Solution
Hint: In the given expression, replace i, by (-i). Now multiply both the equations. Use basic identities like (a2−b2) and solve it. Finally square the LHS and RHS of the equation formed.
Complete step-by-step solution -
Given to us an expression of complex numbers, let us mark it as (1).
x+iy=c+ida+ib−(1)
Now let us replace i by (-i) in the above equation, we get
x−iy=c−ida−ib−(2)
Now let us multiply equation (1) and (2).
(x+iy)(x−iy)=c+ida+ib×c−ida−ib
We know the formula, (a+b)(a−b)=a2−b2. Apply the same in the above expression.
{{x}^{2}}-{{\left( iy \right)}^{2}}=\sqrt{\dfrac{\left( a+ib \right)}{\left( c+id \right)}\times \dfrac{\left( a-ib \right)}{\left( c-id \right)}}\left\\{ \because {{i}^{2}}=-1 \right\\}