Solveeit Logo

Question

Question: Find the value of the integration \[\int {\left\\{ {\dfrac{1}{{\left[ {{x^2}{{\left( {{x^4} + 1} \ri...

Find the value of the integration \int {\left\\{ {\dfrac{1}{{\left[ {{x^2}{{\left( {{x^4} + 1} \right)}^{\dfrac{3}{4}}}} \right]}}} \right\\}} dx
A) [(x4+1)34x]+c\left[ { - \dfrac{{{{\left( {{x^4} + 1} \right)}^{\dfrac{3}{4}}}}}{x}} \right] + c
B) [(1x4)142x]+c\left[ { - \dfrac{{{{\left( {1 - {x^4}} \right)}^{\dfrac{1}{4}}}}}{{2x}}} \right] + c
C) [(1+x4)14x]+c\left[ { - \dfrac{{{{\left( {1 + {x^4}} \right)}^{\dfrac{1}{4}}}}}{x}} \right] + c
D) [(1+x4)14x2]+c\left[ { - \dfrac{{{{\left( {1 + {x^4}} \right)}^{\dfrac{1}{4}}}}}{{{x^2}}}} \right] + c
E) [(1+x4)12x]+c\left[ { - \dfrac{{{{\left( {1 + {x^4}} \right)}^{\dfrac{1}{2}}}}}{x}} \right] + c

Explanation

Solution

Hint : To solve this question we need to follow the substitution process . We have to substitute a unit such that after the substitution integration becomes simple and we can apply the basic rule of integration easily .
FORMULA USED :
d(xn)dx=nxn1\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}
xn=xn+1n+1+c\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c

Complete step-by-step answer :
We have to substitute a portion of the integrand so that the integration becomes simple . To know what part of the integration to be substituted here for this problem we simplify the integrand first .
We must takex4{x^4}common from (x4+1)34{\left( {{x^4} + 1} \right)^{\dfrac{3}{4}}}portion . So denominator of the integrand become {x^2} \times {x^3} \times {\left( {1 + \dfrac{1}{{{x^4}}}} \right)^{\dfrac{3}{4}}}$$$$ = {x^5}{\left( {1 + \dfrac{1}{{{x^4}}}} \right)^{\dfrac{3}{4}}}
So the integrand becomes \int {\left\\{ {\dfrac{1}{{\left[ {{x^5}{{\left( {1 + \dfrac{1}{{{x^4}}}} \right)}^{\dfrac{3}{4}}}} \right]}}} \right\\}} dx
Now we can decide which part we will substitute so that integration becomes simpler.
We will substitute (1+1x4)\left( {1 + \dfrac{1}{{{x^4}}}} \right) as uuand then take derivative of (1+1x4)\left( {1 + \dfrac{1}{{{x^4}}}} \right).
Let us assume \left( {1 + \dfrac{1}{{{x^4}}}} \right)$$$$ = u
After differentiating both side we get
4x5dx=du- \dfrac{4}{{{x^5}}}dx = du
dx=x54du\Rightarrow dx = - \dfrac{{{x^5}}}{4}du
Putting this value in \int {\left\\{ {\dfrac{1}{{\left[ {{x^5}{{\left( {1 + \dfrac{1}{{{x^4}}}} \right)}^{\dfrac{3}{4}}}} \right]}}} \right\\}} dxwe get
\int {\left\\{ {\dfrac{1}{{\left[ {{x^5}{{\left( {1 + \dfrac{1}{{{x^4}}}} \right)}^{\dfrac{3}{4}}}} \right]}}} \right\\}} \times - \dfrac{{{x^5}}}{4}du
After substitution of \left( {1 + \dfrac{1}{{{x^4}}}} \right)$$$$ = u
And after cancelling x5{x^5}from denominator and numerator we get the integration as \int { - \left\\{ {\dfrac{1}{{4\left[ {{u^{\dfrac{3}{4}}}} \right]}}} \right\\}} du
=u344du= \int {\dfrac{{ - {u^{ - \dfrac{3}{4}}}}}{4}} du
We can now see that the integration became so simple ,easy and less complicated.
Now applying basic integration rule we can solve the integration
u344du\int {\dfrac{{ - {u^{ - \dfrac{3}{4}}}}}{4}} du

=14×u34+134+1+c   = - \dfrac{1}{4} \times \dfrac{{{u^{ - \dfrac{3}{4} + 1}}}}{{ - \dfrac{3}{4} + 1}} + c \;

After simplifying we get =u14+c = - {u^{\dfrac{1}{4}}} + c
=u14+c= - {u^{\dfrac{1}{4}}} + c
cc=integration constant
At last we need to convert the answer in terms of xx.
So we will put the value of u in u14+c - {u^{\dfrac{1}{4}}} + c
\left( {1 + \dfrac{1}{{{x^4}}}} \right)$$$$ = u
So answer is (1+1x4)14+c - {\left( {1 + \dfrac{1}{{{x^4}}}} \right)^{\dfrac{1}{4}}} + c
But this answer does not look like any answer in the options . So we will simplify further to get the desired option .
After simplifying we get
=(x4+1)14(x4)14+c= - \dfrac{{{{\left( {{x^4} + 1} \right)}^{\dfrac{1}{4}}}}}{{{{\left( {{x^4}} \right)}^{\dfrac{1}{4}}}}} + c
=(x4+1)14x+c= - \dfrac{{{{\left( {{x^4} + 1} \right)}^{\dfrac{1}{4}}}}}{x} + c
Now we can see the answer matches option C.
So, the correct answer is “Option C”.

Note : We need to choose the part which has to be substituted carefully such that it simplifies the integration .For that we simplify the integrand first .
After the integration we have to put the value back of the substitution .