Solveeit Logo

Question

Question: Find the value of the integral of the function \(\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}...

Find the value of the integral of the function
(2+x2)2x3(1+x2)\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}

Explanation

Solution

We solve this question by first considering the given integral. Then we assume that 1+x2=t1+{{x}^{2}}=t. Then we differentiate it and find the value of dxdx in terms of dtdt. Then we convert the integral in terms of x into the integral with tt as variable and simplify it using the formula, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. Then we consider the obtained integral and then solve it using the formula for integration, xndx=xn+1n+1+c\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c} and another formula for integration, 1xdx=logx+c\int{\dfrac{1}{x}dx}=\log x+c. Then we get the value of integral in terms of variable tt. Then we substitute the value of tt we have assumed in the start, that is t=1+x2t=1+{{x}^{2}} and substitute it in the obtained value to get the final answer.

Complete step by step answer:
Now let us consider given the integral
(2+x2)2x3(1+x2)dx\int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}
Now, let us assume that 1+x2=t1+{{x}^{2}}=t.
Now let us differentiate it. Then we get,
2xdx=dt xdx=dt2 \begin{aligned} & \Rightarrow 2xdx=dt \\\ & \Rightarrow xdx=\dfrac{dt}{2} \\\ \end{aligned}
Now, we can write the integral as,
(2+x2)2x3(1+x2)dx=(2+x2)2x2(1+x2)xdx (2+x2)2x3(1+x2)dx=(1+t)2(t1)tdt2 \begin{aligned} & \Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{2}}}{\left( 1+{{x}^{2}} \right)}xdx} \\\ & \Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{t}\dfrac{dt}{2}} \\\ \end{aligned}
So, we get the integral as,
(2+x2)2x3(1+x2)dx=(1+t)2(t1)2tdt...........(1)\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}...........\left( 1 \right)
Now, let us consider the integral (1+t)2(t1)2tdt\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}.
Now let us consider the formula,
(a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab
Using this we can simplify the above integral as,
(1+t)2(t1)2tdt=(1+t2+2t)(t1)2tdt (1+t)2(t1)2tdt=t+t3+2t21t22t2tdt (1+t)2(t1)2tdt=t3+t2t12tdt \begin{aligned} & \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{\left( 1+{{t}^{2}}+2t \right)\left( t-1 \right)}{2t}dt} \\\ & \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{t+{{t}^{3}}+2{{t}^{2}}-1-{{t}^{2}}-2t}{2t}dt} \\\ & \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{{{t}^{3}}+{{t}^{2}}-t-1}{2t}dt} \\\ \end{aligned}
Simplifying it we get,
(1+t)2(t1)2tdt=12t3+t2t1tdt (1+t)2(t1)2tdt=12(t2+t11t)dt \begin{aligned} & \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\int{\dfrac{{{t}^{3}}+{{t}^{2}}-t-1}{t}dt} \\\ & \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\int{\left( {{t}^{2}}+t-1-\dfrac{1}{t} \right)dt} \\\ \end{aligned}
We can separate the polynomial on the right-hand side of integral and write it as,
(1+t)2(t1)2tdt=12(t2dt+tdt1dt1tdt)\Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\left( \int{{{t}^{2}}dt}+\int{tdt}-\int{1dt}-\int{\dfrac{1}{t}dt} \right)
Now, let us consider the formulas for integration,
xndx=xn+1n+1+c 1xdx=logx+c \begin{aligned} & \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c} \\\ & \int{\dfrac{1}{x}dx}=\log x+c \\\ \end{aligned}
Using it we can write the above equation as,
(1+t)2(t1)2tdt=12(t33+t22tlogt)+c (1+t)2(t1)2tdt=t36+t24t2logt2+c \begin{aligned} & \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+\dfrac{{{t}^{2}}}{2}-t-\log t \right)+c \\\ & \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{{{t}^{3}}}{6}+\dfrac{{{t}^{2}}}{4}-\dfrac{t}{2}-\dfrac{\log t}{2}+c \\\ \end{aligned}
Now let us substitute this value in equation (1). Then we get,
(2+x2)2x3(1+x2)dx=t36+t24t2logt2+c\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\dfrac{{{t}^{3}}}{6}+\dfrac{{{t}^{2}}}{4}-\dfrac{t}{2}-\dfrac{\log t}{2}+c
Now, let us substitute the value of t in terms of x, that is 1+x2=t1+{{x}^{2}}=t.
Then we get the value of the given integral as,
(2+x2)2x3(1+x2)dx=(1+x2)36+(1+x2)24(1+x2)2log(1+x2)2+c\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\dfrac{{{\left( 1+{{x}^{2}} \right)}^{3}}}{6}+\dfrac{{{\left( 1+{{x}^{2}} \right)}^{2}}}{4}-\dfrac{\left( 1+{{x}^{2}} \right)}{2}-\dfrac{\log \left( 1+{{x}^{2}} \right)}{2}+c

Hence the answer is (1+x2)36+(1+x2)24(1+x2)2log(1+x2)2+c\dfrac{{{\left( 1+{{x}^{2}} \right)}^{3}}}{6}+\dfrac{{{\left( 1+{{x}^{2}} \right)}^{2}}}{4}-\dfrac{\left( 1+{{x}^{2}} \right)}{2}-\dfrac{\log \left( 1+{{x}^{2}} \right)}{2}+c.

Note: The common mistake that one makes while solving this problem is after assuming that 1+x2=t1+{{x}^{2}}=t, one might forget to differentiate it and convert dxdx to dtdt and write the integral as,
(2+x2)2x3(1+x2)dx=(1+t)2(t1)32tdt\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}{{\left( t-1 \right)}^{\dfrac{3}{2}}}}{t}dt}
So, one must remember to find the value of dxdx and convert it to dtdt and then solve the integral.