Solveeit Logo

Question

Question: Find the value of the integral \(\int\limits_1^4 {\mathop {\log }\nolimits_e } [x]dx\) from the ...

Find the value of the integral 14loge[x]dx\int\limits_1^4 {\mathop {\log }\nolimits_e } [x]dx
from the options given below:
A. loge2\mathop {\log }\nolimits_e 2
B. loge3\mathop {\log }\nolimits_e 3
C. loge6\mathop {\log }\nolimits_e 6
D. None of the above

Explanation

Solution

Hint-We will make use of the formula of integration by parts and solve it.
We have the integral I= 14loge[x]dx\int\limits_1^4 {\mathop {\log }\nolimits_e } [x]dx
Since we have the limit of integral from 1 to 4,we will split the limits and write the integral
So, we get
I=$$$$     12loge[x]dx\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } [x]dx +    23loge[x]dx\;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } [x]dx +    34loge[x]dx\;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } [x]dx
Greatest integer function is discontinuous at all integers. So we should write the definition of
the function in each of the smaller limits.So,we can write the integral I as
I=    12loge1dx+    23loge2dx+    34loge3dx\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } 1dx + \;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } 2dx + \;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } 3dx
Let us solve this integral by putting the value of loge1=0{\log _e}1 = 0 ,since loge2{\log _e}2 and loge3{\log _e}3 are constants take it out of the integral and solve
I=120dx\int\limits_1^2 0 dx +loge223dx{\log _e}2\int\limits_2^3 {dx} +loge334dx{\log _e}3\int\limits_3^4 {dx}

We know that integral 1 dx is equal to x
So, on solving the integral further ,we get
I= 0+loge2[x]12+loge3[x]34{\log _e}2[x]_1^2 + {\log _e}3[x]_3^4
On applying limits, we get
I=loge2{\log _e}2 [21][2 - 1] +loge3[43]{\log _e}3[4 - 3]
So , we get I= loge2+loge3{\log _e}2 + {\log _e}3
But we know the formula which says
logea+logeb=logeab{\log _e}a + {\log _e}b = {\log _e}ab
Therefore, we can write
loge2+loge3{\log _e}2 + {\log _e}3=loge6{\log _e}6
So, therefore the value of the integral I=loge6{\log _e}6=ln6
So, option C is the correct answer

Note: It is possible to integrate to the greatest integer functions only when the limits are
given, if the limits are not given, we cannot solve the problem.