Solveeit Logo

Question

Question: Find the value of the integral \[\int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \r...

Find the value of the integral ex(cosecx)(1cotx)dx\int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx.
A. ex(cotx)+c B. ex(cosecx)(cotx)+c C. ex(cosecx)+c D. ex(cotx)+c  {\text{A}}{\text{. }}{{\text{e}}^x}\left( {\cot x} \right) + c \\\ {\text{B}}{\text{. }}{{\text{e}}^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right) + c \\\ {\text{C}}{\text{. }}{{\text{e}}^x}\left( {{\text{cosecx}}} \right) + c \\\ {\text{D}}{\text{. }} - {{\text{e}}^x}\left( {\cot x} \right) + c \\\

Explanation

Solution

Hint- Here, we will proceed by using the concept of integration by parts to solve the integral [ex(cosecx)(cotx)]dx\int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx separately and then using the formula (cosecx)(cotx)dx=cosecx\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx = - \cos {\text{ec}}x to simplify the given integral whose value is required.

Complete step by step answer:
Let us then suppose the given integral be

I=ex(cosecx)(1cotx)dx I=[ex(cosecx)ex(cosecx)(cotx)]dx I=[ex(cosecx)]dx[ex(cosecx)(cotx)]dx (1)  {\text{I}} = \int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx \\\ \Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right) - {e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx \\\ \Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx - \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx{\text{ }} \to {\text{(1)}} \\\

According to the formula of integration by parts (ILATE), the integral consisting of two different functions in variable x can be evaluated as under
\int {{\text{f}}\left( x \right)g\left( x \right)} dx = {\text{f}}\left( x \right)\left[ {\int {g\left( x \right)} dx} \right] - \int {\left\\{ {\left[ {\dfrac{d}{{dx}}\left[ {{\text{f}}\left( x \right)} \right]} \right]\int {g\left( x \right)dx} } \right\\}} dx + c{\text{ }} \to {\text{(2)}} where c is any constant of integration
where the functions f(x){\text{f}}\left( x \right) and g(x)g\left( x \right) are arranged based on the priority basis according to ILATE
Considering the integral [ex(cosecx)(cotx)]dx\int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx in equation (1) where the first function is f(x)=exf\left( x \right) = {e^x} and the second function is g(x)=(cosecx)(cotx)g\left( x \right) = \left( {{\text{cosecx}}} \right)\left( {\cot x} \right) and then solving it using the formula given by equation (2), we get
\Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = {e^x}\left[ {\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx} \right] - \int {\left\\{ {\left[ {\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right]\left[ {\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx} \right]} \right\\}} dx + c
Using the formula (cosecx)(cotx)dx=cosecx\int {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} dx = - \cos {\text{ec}}x, the above integral becomes

\Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = {e^x}\left[ { - \cos {\text{ec}}x} \right] - \int {\left\\{ {\left[ {{e^x}} \right]\left[ { - \cos {\text{ec}}x} \right]} \right\\}} dx + c \\\ \Rightarrow \int {{e^x}\left[ {\left( {{\text{cosecx}}} \right)\left( {\cot x} \right)} \right]} dx = - {e^x}\left( {\cos {\text{ec}}x} \right) + \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx + c{\text{ }} \to {\text{(3)}} \\\

By substituting equation (3) in equation (1), we get

I=[ex(cosecx)]dx[ex(cosecx)+[ex(cosecx)]dx]+c I=[ex(cosecx)]dx+ex(cosecx)[ex(cosecx)]dx+c I=ex(cosecx)+c  \Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx - \left[ { - {e^x}\left( {\cos {\text{ec}}x} \right) + \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx} \right] + c \\\ \Rightarrow {\text{I}} = \int {\left[ {{e^x}\left( {{\text{cosecx}}} \right)} \right]} dx + {e^x}\left( {\cos {\text{ec}}x} \right) - \int {\left[ {{e^x}\left( {\cos {\text{ec}}x} \right)} \right]} dx + c \\\ \Rightarrow {\text{I}} = {e^x}\left( {\cos {\text{ec}}x} \right) + c \\\

Therefore, the integral ex(cosecx)(1cotx)dx=ex(cosecx)+c\int {{e^x}\left( {{\text{cosecx}}} \right)} \left( {1 - \cot x} \right)dx = {e^x}\left( {\cos {\text{ec}}x} \right) + c
Hence, option C is correct.

Note- In the method of integration by parts (ILATE), I refers to inverse trigonometric function, L refers to logarithmic function, A refers to algebraic function, T refers to trigonometric function and E refers to exponential function. In this problem, the first function is taken as ex{e^x} and the second function as (cosecx)(cotx)\left( {{\text{cosecx}}} \right)\left( {\cot x} \right) so that the required integral can be solved conveniently.