Solveeit Logo

Question

Question: Find the value of the integral \[\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} ...

Find the value of the integral dx(1+x)xx2\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} . Choose the correct option.

  1. 2(x11x)+C2\left( {\dfrac{{\sqrt x - 1}}{{\sqrt {1 - x} }}} \right) + C
  2. 2(x+11x)+C - 2\left( {\dfrac{{\sqrt x + 1}}{{\sqrt {1 - x} }}} \right) + C
  3. 2(x11+x)+C2\left( {\dfrac{{\sqrt x - 1}}{{\sqrt {1 + x} }}} \right) + C
  4. 2(x+11+x)+C2\left( {\dfrac{{\sqrt x + 1}}{{\sqrt {1 + x} }}} \right) + C
Explanation

Solution

We will start by letting x=sinθ\sqrt x = \sin \theta and differentiate it. After this we will get the value of dxdx also. So, now we will substitute the values in the original expression given and the integral now becomes in terms of sinθ\sin \theta . While simplifying the integral, we will use the trigonometric identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 and tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.

Complete step-by-step answer:
Consider the given integral I=dx(1+x)xx2I = \int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} .
We will start by substituting the value of x\sqrt x as sinθ\sin \theta .
Thus, we get,
x=sinθ\sqrt x = \sin \theta
Now, square root both the sides of the obtained expression, we get,
x=sin2θx = {\sin ^2}\theta
Now, differentiate the above expression, we get,
dx=2sinθcosθdθdx = 2\sin \theta \cos \theta d\theta
Now, substitute the obtained values in the given integral,
Thus, we get,
I=2sinθcosθdθ(1+sinθ)sin2θsin4θI = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sqrt {{{\sin }^2}\theta - {{\sin }^4}\theta } }}}
In the denominator, we can take out sin2θ{\sin ^2}\theta common from the square root term and take sinθ\sin \theta out from the respective term,
Thus, we get,

I=2sinθcosθdθ(1+sinθ)sin2θ(1sin2θ) I=2sinθcosθdθ(1+sinθ)sinθ1sin2θ  \Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sqrt {{{\sin }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)} }}} \\\ \Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \sqrt {1 - {{\sin }^2}\theta } }}} \\\

Now, we will use the trigonometric identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 which gives us the value of 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta .
Thus, we get,

I=2sinθcosθdθ(1+sinθ)sinθcos2θ I=2sinθcosθdθ(1+sinθ)sinθcosθ I=2dθ(1+sinθ)  \Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \sqrt {{{\cos }^2}\theta } }}} \\\ \Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \cos \theta }}} \\\ \Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}}} \\\

Next, rationalize by multiplying the numerator and denominator with 1sinθ1 - \sin \theta . Thus, we get,

I=2dθ(1+sinθ)×1sinθ1sinθ I=2(1sinθ)dθ(1sinθ)(1+sinθ)  \Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}} \times \dfrac{{1 - \sin \theta }}{{1 - \sin \theta }}} \\\ \Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}}} \\\

Now, use the property, (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} in the denominator.

I=2(1sinθ)dθ(1sinθ)(1+sinθ) I=2dθ(1+sinθ)×1sinθ1sinθ I=2(1sinθ)dθ1sin2θ  \Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}}} \\\ \Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}} \times \dfrac{{1 - \sin \theta }}{{1 - \sin \theta }}} \\\ \Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{1 - {{\sin }^2}\theta }}} \\\

Now, we will use the trigonometric identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 which gives us the value of 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta .
I=2(1sinθ)dθcos2θ\Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{{{\cos }^2}\theta }}}
Further, simplify the obtained expression,
Thus, we get,
I=2dθcos2θ2sinθdθcos2θ\Rightarrow I = 2\int {\dfrac{{d\theta }}{{{{\cos }^2}\theta }}} - 2\int {\dfrac{{\sin \theta d\theta }}{{{{\cos }^2}\theta }}}
We know that, 1cos2θ=sec2θ\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta and sinθcosθ1cosθ=tanθsecθ\dfrac{{\sin \theta }}{{\cos \theta }} \cdot \dfrac{1}{{\cos \theta }} = \tan \theta \cdot \sec \theta , use this in the above expression,
Thus, we get,
I=2sec2θdθ2tanθsecθdθ\Rightarrow I = 2\int {{{\sec }^2}\theta d\theta } - 2\int {\tan \theta \sec \theta d\theta }
Here, we know that the direct integral form of sec2θ{\sec ^2}\theta is sec2θdθ=tanθ\int {{{\sec }^2}\theta d\theta } = \tan \theta and direct integral form of tanθsecθ\tan \theta \sec \theta is tanθsecθdθ=secθ\int {\tan \theta \sec \theta d\theta = \sec \theta } .
Thus, directly apply it in the above integral, we get,
I=2tanθ2secθ+C\Rightarrow I = 2\tan \theta - 2\sec \theta + C
As we know that, sinθ=x\sin \theta = \sqrt x
We can easily find the value of cosθ\cos \theta by substituting in the identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Thus, we get,

cosθ=1sin2θ cosθ=1x  \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } \\\ \Rightarrow \cos \theta = \sqrt {1 - x} \\\

Using the values of sinθ=x\sin \theta = \sqrt x and cosθ=1x\cos \theta = \sqrt {1 - x} , we can find the value of tanθ\tan \theta .
Thus, we get,

tanθ=sinθcosθ =x1x  \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} \\\ = \dfrac{{\sqrt x }}{{\sqrt {1 - x} }} \\\

And

secθ=1cosθ =11x  \sec \theta = \dfrac{1}{{\cos \theta }} \\\ = \dfrac{1}{{\sqrt {1 - x} }} \\\

Now, substitute the obtained values in the above integral, we get,

I=2x1x211x+C I=2[x11x]+C  \Rightarrow I = 2\dfrac{{\sqrt x }}{{\sqrt {1 - x} }} - 2\dfrac{1}{{\sqrt {1 - x} }} + C \\\ \Rightarrow I = 2\left[ {\dfrac{{\sqrt x - 1}}{{\sqrt {1 - x} }}} \right] + C \\\

Thus, the value of the integral I=dx(1+x)xx2I = \int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} is 2(x11x)+C2\left( {\dfrac{{\sqrt x - 1}}{{\sqrt {1 - x} }}} \right) + C
Hence, option A is correct

Note: Remember to rationalize the expression with 1sinθ1 - \sin \theta at I=2dθ(1+sinθ)I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}}} . Use of trigonometric identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 is necessary at two or three places while doing the integration. Also, we have used the conversion of tanθ\tan \theta and secθ\sec \theta in terms of sinθ\sin \theta and cosθ\cos \theta . It is necessary to remember the direct integral forms of some expressions like in this question we have used sec2θdθ=tanθ\int {{{\sec }^2}\theta d\theta } = \tan \theta and tanθsecθdθ=secθ\int {\tan \theta \sec \theta d\theta = \sec \theta } . Many students forget to change the expression after integration into x. Keep that in mind after integration we need to take help from trigonometric identities to convert the expression into x as a variable.