Solveeit Logo

Question

Question: Find the value of the integral \( \dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx \) from \( 0 \) to...

Find the value of the integral (1+2cosx)(2+cosx)2dx\dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx from 00 to π2\dfrac{\pi }{2}.

Explanation

Solution

Hint : We have to integrate the given function (1+2cosx)(2+cosx)2dx\dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx for the values of the integrals 00 to π2\dfrac{\pi }{2} with respect to xx .We solve this question using the substitution method of integration . We simply put the value of ( cos x + 2 ) = 1t\left( {{\text{ }}cos{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{1}{t} . Then differentiate the substituted function with respect to xx . Put the value of limit in xx and then compute the new limit . As we change the integral with respect to a variable then the limit of the integral also changes .

Complete step-by-step answer :
Given : \mathop \smallint \limits_0^{\dfrac{\pi }{2}} \dfrac{{(1 + 2cosx)}}{{{{(2 + cosx)}^2}}}dx
Let I = \mathop \smallint \limits_0^{\dfrac{\pi }{2}} \dfrac{{(1 + 2cosx)}}{{{{(2 + cosx)}^2}}}dx
We have to integrate II with respect to
Put ( cos x + 2 ) = 1t\left( {{\text{ }}cos{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{1}{t}
As sin2x+cos2x=1si{n^2}x + co{s^2}x = 1
sinx=(1(1t2)2)\sin x = \sqrt {(1 - {{(\dfrac{1}{t} - 2)}^2})}
Differentiate tt with respect to, we get
( derivative of cos x =  sin xcos{\text{ }}x{\text{ }} = {\text{ }} - {\text{ }}sin{\text{ }}x )
( derivative of constantconstant = 0 = {\text{ }}0 )
( derivative xn=nx(n1){x^n} = n{x^{(n - 1)}} )
sinxdx=1t2dt- \sin xdx = \dfrac{{ - 1}}{{{t^2}}}dt
Putting values of limit in xx we get the new limits
When x= π2x = {\text{ }}\dfrac{\pi }{2} then t = 12t{\text{ }} = {\text{ }}\dfrac{1}{2}
When x = 0x{\text{ }} = {\text{ }}0 then t = 13t{\text{ }} = {\text{ }}\dfrac{1}{3}
Now , the integral becomes
I = \mathop \smallint \limits_{\dfrac{1}{3}}^{\dfrac{1}{2}} [\dfrac{{(1 + 2 \times (\dfrac{1}{t} - 2))}}{{\dfrac{1}{{{t^2}}} \times {t^2} \times \sqrt {(1 - {{(\dfrac{1}{t} - 2)}^2})} }}] dt
On further simplifying , we get
I = \mathop \smallint \limits_{\dfrac{1}{3}}^{\dfrac{1}{2}} [\dfrac{{(2 - 3t)}}{{\sqrt {( - 1 - 3{t^2} + 4t)} }}] dt
Put (13t2+4t)=z( - 1 - 3{t^2} + 4t) = z
Differentiate zz with respect to , we get
( derivative xn=nx(n1){x^n} = n{x^{(n - 1)}} )
Putting values of limit in xx we get the new limits
When   t = 12\;t{\text{ }} = {\text{ }}\dfrac{1}{2} then z = 14z{\text{ }} = {\text{ }}\dfrac{1}{4}
When   t = 13\;t{\text{ }} = {\text{ }}\dfrac{1}{3} then z = 0z{\text{ }} = {\text{ }}0
Now , the integral becomes
I = \mathop \smallint \limits_0^{\dfrac{1}{4}} (\dfrac{1}{2})[\dfrac{1}{{\sqrt z }}] dz
Integrating the integral we get
I=[014z]I = \mathop [\limits_0^{\dfrac{1}{4}} \sqrt z ]
Putting the values of limit in the integral , we get
I = 12I{\text{ }} = {\text{ }}\dfrac{1}{2}
Thus , integral (1+2cosx)(2+cosx)2dx\dfrac{{(1 + 2\cos x)}}{{{{(2 + \cos x)}^2}}}dx from 00 to π2\dfrac{\pi }{2} = 12 = {\text{ }}\dfrac{1}{2}
So, the correct answer is “Option B”.

Note: As the question was of definite integral that’s why we have not added integration constant . If the question would be of indefinite integral then we would add an integral constant to the final answer . We use the formula of By-Parts to integrate two functions of a single variable x by taking one functions as u and second function as v and then applying the formula :
 [uv] dx = u ×  [v] dx  [ ( ddx u) ×  [v] ] dx\smallint {\text{ }}\left[ {uv} \right] {\text{ }}dx{\text{ }} = {\text{ }}u{\text{ }} \times {\text{ }}\smallint {\text{ }}\left[ v \right] {\text{ }}dx{\text{ }} - {\text{ }}\smallint \left[ {{\text{ }}\left( {{\text{ }}\dfrac{d}{{dx}}{\text{ }}u} \right){\text{ }} \times {\text{ }}\smallint {\text{ }}} \right[v\left] {\text{ }} \right] {\text{ }}dx