Question
Question: Find the value of the given trigonometric ratio, \(\tan 15{}^\circ \) ....
Find the value of the given trigonometric ratio, tan15∘ .
Solution
Hint: Use the formula of tan2A along with the value of tan30∘ , to get a quadratic equation. Solve the quadratic equation to reach the required answer.
Complete step-by-step answer:
We know;
tan30∘=31
The other commonly used trigonometric values include:
tan0∘=0
tan45∘=1
tan60∘=3
Also, we have, the formula: tan2A=1−tan2A2tanA
So, in the above formula substituting A=15∘ .
∴tan2A=1−tan2A2tanA
⇒tan(2×15∘)=1−tan215∘2tan15∘
⇒tan30∘=1−tan215∘2tan15∘
Putting the value of tan30∘ in the equation, we get;
31=1−tan215∘2tan15∘
On cross-multiplication, we get;
1−tan215∘=23tan15∘
⇒tan215∘+23tan15∘−1=0
So, the equation we get is a quadratic equation, and one of the roots of this quadratic equation would be the value of tan15∘.
We know, for a quadratic equation of the form ax2+bx+c=0 .
x=2a−b±b2−4ac
Applying the formula to our quadratic equation, we have;
tan15∘=2×1−23±(23)2−4×1×(−1)
⇒tan15∘=2−23±12+4
⇒tan15∘=2−23±16
⇒tan15∘=2−23±4
We know, 15∘ lies in the first quadrant.
According to the graph of tan(x) :
tan(x) is positive when x lies in the first quadrant.
Therefore, tan15∘ is also positive.
∴tan15∘=2−23+4
⇒tan15∘=(−3+2)
∴tan15∘=2−3
Hence, the value of tan15∘ is 2−3 .
Note: Other useful formulas include:
tan(A+B)=1−tanAtanBtanA+tanB
tan(A−B)=1+tanAtanBtanA−tanB
And you are free to use any formula, just substitute the angles according to the need to get the desired values.
We can also find the value of tan15∘ using formula: tan(A−B)=1+tanAtanBtanA−tanB .
On Substituting A and B in the above formula, we get;
A=45∘
B=30∘
The equation becomes:
tan(A−B)=1+tanAtanBtanA−tanB
⇒tan(45∘−30∘)=1+tan45∘tan30∘tan45∘−tan30∘
⇒tan15∘=1+1×311−(31)
Point to remember: whenever you try to find the value of sin15∘ , don’t use the formula of sin2A , instead, go for the formula: cos2A=1−2sin2A . The reason being, whenever you use the formula of sin2A , you get both cosA and sinA to be unknown, making it difficult to solve.