Solveeit Logo

Question

Question: Find the value of the given trigonometric ratio, \(\tan 15{}^\circ \) ....

Find the value of the given trigonometric ratio, tan15\tan 15{}^\circ .

Explanation

Solution

Hint: Use the formula of tan2A\tan 2A along with the value of tan30\tan 30{}^\circ , to get a quadratic equation. Solve the quadratic equation to reach the required answer.

Complete step-by-step answer:
We know;
tan30=13\tan 30{}^\circ =\dfrac{1}{\sqrt{3}}

The other commonly used trigonometric values include:
tan0=0\tan 0{}^\circ =0
tan45=1\tan 45{}^\circ =1
tan60=3\tan 60{}^\circ =\sqrt{3}

Also, we have, the formula: tan2A=2tanA1tan2A\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}

So, in the above formula substituting A=15A=15{}^\circ .
tan2A=2tanA1tan2A\therefore \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}
tan(2×15)=2tan151tan215\Rightarrow \tan \left( 2\times 15{}^\circ \right)=\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }
tan30=2tan151tan215\Rightarrow \tan 30{}^\circ =\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }

Putting the value of tan30\tan 30{}^\circ in the equation, we get;
13=2tan151tan215\dfrac{1}{\sqrt{3}}=\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }

On cross-multiplication, we get;
1tan215=23tan151-{{\tan }^{2}}15{}^\circ =2\sqrt{3}\tan 15{}^\circ
tan215+23tan151=0\Rightarrow {{\tan }^{2}}15{}^\circ +2\sqrt{3}\tan 15{}^\circ -1=0

So, the equation we get is a quadratic equation, and one of the roots of this quadratic equation would be the value of tan15\tan 15{}^\circ .

We know, for a quadratic equation of the form ax2+bx+c=0a{{x}^{2}}+bx+c=0 .
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}

Applying the formula to our quadratic equation, we have;
tan15=23±(23)24×1×(1)2×1\tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4\times 1\times \left( -1 \right)}}{2\times 1}
tan15=23±12+42\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}
tan15=23±162\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}
tan15=23±42\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm 4}{2}

We know, 1515{}^\circ lies in the first quadrant.

According to the graph of tan(x)\tan (x) :

tan(x)\tan (x) is positive when x lies in the first quadrant.

Therefore, tan15\tan 15{}^\circ is also positive.
tan15=23+42\therefore \tan 15{}^\circ =\dfrac{-2\sqrt{3}+4}{2}
tan15=(3+2)\Rightarrow \tan 15{}^\circ =\dfrac{\left( -\sqrt{3}+2 \right)}{{}}
tan15=23\therefore \tan 15{}^\circ =2-\sqrt{3}

Hence, the value of tan15\tan 15{}^\circ is 232-\sqrt{3} .

Note: Other useful formulas include:
tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
tan(AB)=tanAtanB1+tanAtanB\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}

And you are free to use any formula, just substitute the angles according to the need to get the desired values.

We can also find the value of tan15\tan 15{}^\circ using formula: tan(AB)=tanAtanB1+tanAtanB\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} .

On Substituting A and B in the above formula, we get;
A=45A=45{}^\circ
B=30B=30{}^\circ

The equation becomes:
tan(AB)=tanAtanB1+tanAtanB\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}
tan(4530)=tan45tan301+tan45tan30\Rightarrow \tan (45{}^\circ -30{}^\circ )=\dfrac{\tan 45{}^\circ -\tan 30{}^\circ }{1+\tan 45{}^\circ \tan 30{}^\circ }
tan15=1(13)1+1×13\Rightarrow \tan 15{}^\circ =\dfrac{1-\left( \dfrac{1}{\sqrt{3}} \right)}{1+1\times \dfrac{1}{\sqrt{3}}}

Point to remember: whenever you try to find the value of sin15\sin 15{}^\circ , don’t use the formula of sin2A\sin 2A , instead, go for the formula: cos2A=12sin2A\cos 2A=1-2{{\sin }^{2}}A . The reason being, whenever you use the formula of sin2A\sin 2A , you get both cosA\cos A and sinA\sin A to be unknown, making it difficult to solve.