Solveeit Logo

Question

Question: Find the value of the given logarithmic term: \( {\text{lo}}{{\text{g}}_4}13.26 \) = ?...

Find the value of the given logarithmic term:
log413.26{\text{lo}}{{\text{g}}_4}13.26 = ?

Explanation

Solution

Hint : In order to find the value of the given logarithmic function, we observe that it cannot be directly solved, therefore we use a few logarithmic formulas to simplify and compute the given term. We make us of the identities,
logaM = logbM×logab{\text{lo}}{{\text{g}}_{\text{a}}}{\text{M = lo}}{{\text{g}}_{\text{b}}}{\text{M}} \times {\text{lo}}{{\text{g}}_{\text{a}}}{\text{b}}
logab = 1logba{\text{lo}}{{\text{g}}_{\text{a}}}{\text{b = }}\dfrac{1}{{{\text{lo}}{{\text{g}}_{\text{b}}}{\text{a}}}}

Complete step-by-step answer :
Given Data,
log413.26{\text{lo}}{{\text{g}}_4}13.26
Using the formula of logarithmic terms, logaM = logbM×logab{\text{lo}}{{\text{g}}_{\text{a}}}{\text{M = lo}}{{\text{g}}_{\text{b}}}{\text{M}} \times {\text{lo}}{{\text{g}}_{\text{a}}}{\text{b}}
We can express log413.26{\text{lo}}{{\text{g}}_4}13.26 as:
log413.26 = log1013.26×log410\Rightarrow {\text{lo}}{{\text{g}}_4}13.26{\text{ }} = {\text{ lo}}{{\text{g}}_{10}}13.26 \times {\text{lo}}{{\text{g}}_4}10
Now using the formula, logab = 1logba{\text{lo}}{{\text{g}}_{\text{a}}}{\text{b = }}\dfrac{1}{{{\text{lo}}{{\text{g}}_{\text{b}}}{\text{a}}}} we can express the above equation in form of,
log413.26 = log1013.26×1log104\Rightarrow {\text{lo}}{{\text{g}}_4}13.26{\text{ }} = {\text{ lo}}{{\text{g}}_{10}}13.26 \times \dfrac{1}{{{\text{lo}}{{\text{g}}_{10}}4}}
Using the logarithmic table we find the values of the terms,
log1013.26 = 1.1225{\text{lo}}{{\text{g}}_{10}}13.26{\text{ = 1}}{\text{.1225}}
log104 = 0.6021{\text{lo}}{{\text{g}}_{10}}4{\text{ = 0}}{\text{.6021}}
Therefore we obtain, log413.26 = 1.12250.6021{\text{lo}}{{\text{g}}_4}13.26{\text{ = }}\dfrac{{1.1225}}{{0.6021}}

Now let us consider some variable x such that, log413.26 = 1.12250.6021=x{\text{lo}}{{\text{g}}_4}13.26{\text{ = }}\dfrac{{1.1225}}{{0.6021}} = {\text{x}}
Let us apply logarithm on both sides for this term, we get
log x = log(1.12250.6021)\Rightarrow {\text{log x = log}}\left( {\dfrac{{1.1225}}{{0.6021}}} \right)
We know the formula, log a - log b = log(ab){\text{log a - log b = log}}\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right)
\Rightarrow {\text{log x = log 1}}{\text{.1225 - log 0}}{\text{.6021}} \\\ \Rightarrow {\text{log x = 0}}{\text{.0503 - }}\mathop 1\limits^\\_ {\text{.7797}} \\\ \Rightarrow {\text{log x = 0}}{\text{.0503 - }}\left( { - 1 + 0.7797} \right) \\\ \Rightarrow {\text{log x = 0}}{\text{.0503 + 1 - 0}}{\text{.7797}} \\\ \Rightarrow {\text{log x = 0}}{\text{.2706}} \\\ \Rightarrow {\text{x = anti log 0}}{\text{.2706 = 1}}{\text{.865}} \\\

Hence the value of the given logarithmic term, log413.26=1.865{\text{lo}}{{\text{g}}_4}13.26 = 1.865

Note : In order to solve this type of problems the key is to know the concepts of logarithms and their relations. We are supposed to know the formulae of logs like, logaM = logbM×logab{\text{lo}}{{\text{g}}_{\text{a}}}{\text{M = lo}}{{\text{g}}_{\text{b}}}{\text{M}} \times {\text{lo}}{{\text{g}}_{\text{a}}}{\text{b}} , logab = 1logba{\text{lo}}{{\text{g}}_{\text{a}}}{\text{b = }}\dfrac{1}{{{\text{lo}}{{\text{g}}_{\text{b}}}{\text{a}}}} and log a - log b = log(ab){\text{log a - log b = log}}\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right) to be able to simplify the given terms.
Any natural logarithm is expressed with a base equal to 10 or ‘e’, where ‘e’ is a constant having the value approximately equal to 2.71.We find the value of log of a number or an anti-log of a number by referring to the logarithmic table, it has values to logarithms of almost all numbers including decimals.