Solveeit Logo

Question

Question: Find the value of the given integral \(\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} \) \( {...

Find the value of the given integral 1 - sinxdx = \int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}}
A. 21 + sinx+C B. 21 - sinx+C C. 21 - 2sinx+C D. 21 - sin2x+C  {\text{A}}{\text{. 2}}\sqrt {{\text{1 + sinx}}} + {\text{C}} \\\ {\text{B}}{\text{. 2}}\sqrt {{\text{1 - sinx}}} + {\text{C}} \\\ {\text{C}}{\text{. 2}}\sqrt {{\text{1 - 2sinx}}} + {\text{C}} \\\ {\text{D}}{\text{. 2}}\sqrt {{\text{1 - sin2x}}} + {\text{C}} \\\

Explanation

Solution

Hint:To compute the value of the integral, we use the trigonometric identity sin2θ+cos2θ=1{\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1, we rearrange the terms inside the square root by using algebraic formula. And compute the integral values of sin and cos functions and add them.

Complete step-by-step answer:
Given Data, 1 - sinxdx = \int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}}
We know, sin2θ+cos2θ=1{\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1, sin2θ = 2sinθ2cosθ2{\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}.
Also we know(a + b)2=a2+b2 + 2ab{\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}}.
Using these identities we transform the equation as
1 - sinxdx = \int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} sin2x2 + cos2x2 - sinxdx\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - sinx}}} {\text{dx}}}
1 - sinxdx = \int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} sin2x2 + cos2x2 - 2sinx2cosx2dx\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - 2sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} {\text{dx}}}
= (sinx2 + cosx2)2dx\int {\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} } {\text{dx}}
= (sinx2 + cosx2)dx\int {\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)} {\text{dx}}
= sinx2dx + cosx2dx\int {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{dx + }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}{\text{dx}}} } -- (1)
We knowsinx=cosx, hence sinx2=cosx2ddx(x2)=cosx212\int {{\text{sinx}}} = - {\text{cosx, hence }}\int {{\text{sin}}\dfrac{{\text{x}}}{2}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}.
Similarly we know, cosx=sinx, hence cosx2=sinx2ddx(x2)=sinx212\int {{\text{cosx}}} = {\text{sinx, hence }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}
Hence, equation (1) becomes,
cosx212\dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}+sinx212\dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}+C
2cosx2+2sinx2+C - 2{\text{cos}}\dfrac{{\text{x}}}{2} + 2{\text{sin}}\dfrac{{\text{x}}}{2} + {\text{C}} (where C is the integration constant).
2[sinx2cosx2]+C We can write this as, 2(sinx2cosx2)2+C 2(sin2x2+cos2x22sinx2cosx2)+C  \Rightarrow 2\left[ {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right] + {\text{C}} \\\ {\text{We can write this as,}} \\\ \Rightarrow {\text{2}}\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} + {\text{C}} \\\ \Rightarrow {\text{2}}\sqrt {\left( {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2} + {\text{co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2} - 2{\text{sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} \right)} + {\text{C}} \\\ -- We used (a - b)2=a2 + b2 - 2ab{\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}
We know, sin2θ+cos2θ=1{\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1, sin2θ = 2sinθ2cosθ2{\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}. Hence the equation becomes,
21sinx+C\Rightarrow 2\sqrt {1 - {\text{sinx}}} + {\text{C}}
Therefore1 - sinxdx = \int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} 21sinx+C2\sqrt {1 - {\text{sinx}}} + {\text{C}}. Hence Option B is the correct answer.

Note – In order to solve this kind of problems the key is to represent the given integral as a sum of the results of two or more integral values as we know the integral values of sin and cos functions, also as the angle inside the functions isx2\dfrac{{\text{x}}}{2}, we should be careful while applying the integration formula. Having adequate knowledge in the trigonometric identities of sin and cos functions likesin2θ+cos2θ=1{\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1, sin2θ = 2sinθ2cosθ2{\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}is required. Basic algebraic formulae like (a + b)2=a2+b2 + 2ab{\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}} and (a - b)2=a2 + b2 - 2ab{\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}} are also used.