Question
Question: Find the value of the given integral \(\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} \) \( {...
Find the value of the given integral ∫1 - sinxdx =
A. 21 + sinx+C B. 21 - sinx+C C. 21 - 2sinx+C D. 21 - sin2x+C
Solution
Hint:To compute the value of the integral, we use the trigonometric identity sin2θ+cos2θ=1, we rearrange the terms inside the square root by using algebraic formula. And compute the integral values of sin and cos functions and add them.
Complete step-by-step answer:
Given Data, ∫1 - sinxdx =
We know, sin2θ+cos2θ=1, sin2θ = 2sin2θcos2θ.
Also we know(a + b)2=a2+b2 + 2ab.
Using these identities we transform the equation as
∫1 - sinxdx = ∫sin22x + cos22x - sinxdx
⟹∫1 - sinxdx = ∫sin22x + cos22x - 2sin2xcos2xdx
= ∫(sin2x + cos2x)2dx
= ∫(sin2x + cos2x)dx
= ∫sin2xdx + ∫cos2xdx -- (1)
We know∫sinx=−cosx, hence ∫sin2x=dxd(2x)−cos2x=21−cos2x.
Similarly we know, ∫cosx=sinx, hence ∫cos2x=dxd(2x)sin2x=21sin2x
Hence, equation (1) becomes,
⟹21−cos2x+21sin2x+C
⟹−2cos2x+2sin2x+C (where C is the integration constant).
⇒2[sin2x−cos2x]+C We can write this as, ⇒2(sin2x−cos2x)2+C ⇒2(sin22x+cos22x−2sin2xcos2x)+C -- We used (a - b)2=a2 + b2 - 2ab
We know, sin2θ+cos2θ=1, sin2θ = 2sin2θcos2θ. Hence the equation becomes,
⇒21−sinx+C
Therefore∫1 - sinxdx = 21−sinx+C. Hence Option B is the correct answer.
Note – In order to solve this kind of problems the key is to represent the given integral as a sum of the results of two or more integral values as we know the integral values of sin and cos functions, also as the angle inside the functions is2x, we should be careful while applying the integration formula. Having adequate knowledge in the trigonometric identities of sin and cos functions likesin2θ+cos2θ=1, sin2θ = 2sin2θcos2θis required. Basic algebraic formulae like (a + b)2=a2+b2 + 2ab and (a - b)2=a2 + b2 - 2ab are also used.