Solveeit Logo

Question

Question: Find the value of the function at \(x=2\) denoted by \(f\left( 2 \right)\) where the function is gov...

Find the value of the function at x=2x=2 denoted by f(2)f\left( 2 \right) where the function is governed by the functional equation af(x)+bf(1x)=x1af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1 subjected to the conditions x0x\ne 0 and aba\ne b.

Explanation

Solution

Substitute x=2x=2 and x=12x=\dfrac{1}{2} in the given functional equation. The functional equation will be converted to a linear equation and you will obtain a pair of linear equations with two coefficients aa and bb. Proceed by the method of elimination to eliminate the unneeded unknown in the system of equations to express f(2)f\left( 2 \right) in terms of aa and bb.

Complete step-by-step solution:
The given functional equation is,
af(x)+bf(1x)=x1........(1)af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1…………........\left( 1 \right) Substituting $x=2$ in the above equation (1)
af(2)+bf(12)=21=1................(2)af\left( 2 \right)+bf\left( \dfrac{1}{2} \right)=2-1=1................(2)
Substituting x=12x=\dfrac{1}{2} in the above equation (1)
af(12)+bf(112)=af(12)+bf(2)=121=12..............(3)af\left( \dfrac{1}{2} \right)+bf\left( \dfrac{1}{\dfrac{1}{2}} \right)=af\left( \dfrac{1}{2} \right)+bf\left( 2 \right)=\dfrac{1}{2}-1=-\dfrac{1}{2}..............(3)
Now the obtained equations (2) and (3) are a pair of linear equations with coefficients aa and bb. The unknowns in the obtained equation are f(2)f\left( 2 \right) and f(12)f\left( \dfrac{1}{2} \right) . We proceed to eliminate f(12)f\left( \dfrac{1}{2} \right) from the system of linear of equations. Let us multiply $a$ with equation (3) $\begin{aligned} & a\cdot \text{equation}\left( 3 \right)=a\cdot af\left( 2 \right)+a\cdot bf\left( \dfrac{1}{2} \right)=a\cdot 1 \\\ & \Rightarrow {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)=a………...(4) \\\ \end{aligned}$
Similarly let us multiply bb with equation (3)
\begin{aligned} & b\cdot \text{equation}(4)=b\cdot af\left( \dfrac{1}{2} \right)+b\cdot bf\left( 2 \right)=-\dfrac{1}{2}\cdot b \\\ & \Rightarrow abf\left( \dfrac{1}{2} \right)+{{b}^{2}}f\left( 2 \right)=\dfrac{-b}{2}.....(5) \\\ \end{aligned}$$$$$ Subtracting equation (5) from equation (4). Equation (5)- Equation (6)= \begin{aligned}
& {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)-abf\left( \dfrac{1}{2} \right)-{{b}^{2}}f\left( 2 \right)=a+\dfrac{b}{2} \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)-{{b}^{2}}f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow f\left( 2 \right)=\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)} \\
\end{aligned}Sothevalueof So the value off\left( 2 \right)isfoundtobeis found to be\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)}.Wecancheckthatthe. We can check that the f\left( 2 \right)isnotdefinedwhenis not defined whena=b$. That is why the question already mentions the favourable condition.

Note: The question combines the concept of linear and functional equations. While solving functional equations the key is proper substitution which is in this case 2 and 12\dfrac{1}{2}. If we cannot find the right substitution then we cannot transform the functional equation to simple linear equations. So we need to be careful while substituting.