Solveeit Logo

Question

Question: Find the value of the following \(\tan \left( \dfrac{1}{2}\left[ {{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}...

Find the value of the following tan(12[sin12x1+x2+cos11y21+y2])\tan \left( \dfrac{1}{2}\left[ {{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}+{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right] \right), x<1,y<0\left| x \right|<1,y<0 and xy<1xy<1

Explanation

Solution

To solve this problem, we should know the transformation formulae of inverse trigonometric functions. We know that the formulae related to the inverse trigonometric formulae are
sin(2x1+x2)=2tan1x if x1 cos1(1y21+y2)=2tan1y if y<0 \begin{aligned} & \sin \left( \dfrac{2x}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\text{ if }\left| x \right|\le 1 \\\ & {{\cos }^{-1}}\left( \dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right)=-2{{\tan }^{-1}}y\text{ if }y<0 \\\ \end{aligned}
Using these relations, we can get the expression in the question in the form of
tan(tan1xtan1y)\tan \left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right). We know the formula tan1xtan1y=tan1(xy1+xy){{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right). Using this formula we can get the required answer.

Complete step-by-step solution:
Let us consider the term sin12x1+x2{{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}.
We can write the transformed formula for sin12x1+x2{{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}} as
sin(2x1+x2)=2tan1x\sin \left( \dfrac{2x}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x.
We can infer that the interval in which the formula is valid is given by x1\left| x \right|\le 1 which coincides with the interval of x given in the question.
Let us consider the term cos11y21+y2{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}}.
We can write the transformed formula for cos11y21+y2{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} as
cos1(1y21+y2)=2tan1y{{\cos }^{-1}}\left( \dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right)=-2{{\tan }^{-1}}y
We can infer that the interval in which the formula is valid is given by y<0y<0 which coincides with the interval of y given in the question.
So, we can write the expression in the question as
tan(12[sin12x1+x2+cos11y21+y2])=tan(12[2tan1x2tan1y])\tan \left( \dfrac{1}{2}\left[ {{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}+{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right] \right)=\tan \left( \dfrac{1}{2}\left[ 2{{\tan }^{-1}}x-2{{\tan }^{-1}}y \right] \right)
Cancelling two in the expression, we get
tan(12[2tan1x2tan1y])=tan(tan1xtan1y)\tan \left( \dfrac{1}{2}\left[ 2{{\tan }^{-1}}x-2{{\tan }^{-1}}y \right] \right)=\tan \left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)
We know the formula
tan1xtan1y=tan1(xy1+xy){{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)
Using this formula, we get

tan(tan1xtan1y)=tan(tan1(xy1+xy))\tan \left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right) \right)
We know that tan(tan1x)=x xR\tan \left( {{\tan }^{-1}}x \right)=x\text{ }\forall x\in R.
We can write the above equation as
tan(12[sin12x1+x2+cos11y21+y2])=xy1+xy\tan \left( \dfrac{1}{2}\left[ {{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}+{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right] \right)=\dfrac{x-y}{1+xy}

Note: Students make a mistake in applying the formula of cos11y21+y2{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}}. We should be aware of the range of values of y for which the function is defined. If y > 0, we can write the formula as
cos11y21+y2=2tan1y{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}}=2{{\tan }^{-1}}y.
But we are asked in the range of y < 0, in this range the formula changes as
cos11y21+y2=2tan1y{{\cos }^{-1}}\dfrac{1-{{y}^{2}}}{1+{{y}^{2}}}=-2{{\tan }^{-1}}y
Students should be careful about the range of the variables while dealing with inverse trigonometric functions as they vary with the range in which they are defined in the question.