Solveeit Logo

Question

Question: Find the value of the following: \(\tan \dfrac{1}{2}\left[ {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2...

Find the value of the following: tan12[sin1(2x1+x2)+cos1(1y21+y2)]\tan \dfrac{1}{2}\left[ {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)+{{\cos }^{-1}}\left( \dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right) \right], if x1,y0\left| x \right|\le 1,y\ge 0 and xy1xy\le 1.

Explanation

Solution

Hint: Assume the value of the given expression as ‘E’ .Substitute x=tanθx=\tan \theta and y=tanϕy=\tan \phi . Simplify the equations: (2x1+x2)\left( \dfrac{2x}{1+{{x}^{2}}} \right) and (1y21+y2)\left( \dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right) using the formulas: 2tanθ1+tan2θ=sin2θ\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }=\sin 2\theta and (1tan2ϕ1+tan2ϕ)=cos2ϕ\left( \dfrac{1-{{\tan }^{2}}\phi }{1+{{\tan }^{2}}\phi } \right)=\cos 2\phi . Once simplified, use the identities: sin1(sina)=a{{\sin }^{-1}}\left( \sin a \right)=a and cos1(cosb)=b{{\cos }^{-1}}\left( \cos b \right)=b, to get rid of inverse functions. Now, use the relation of tangent of a sum of two angles, given as: tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ\tan \left( \theta +\phi \right)=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi } and again substitute the value of tanθ\tan \theta and tanϕ\tan \phi to get the answer.

Complete step-by-step solution -
We have been given, to find the value of: tan12[sin1(2x1+x2)+cos1(1y21+y2)]\tan \dfrac{1}{2}\left[ {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)+{{\cos }^{-1}}\left( \dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right) \right].
Let us assume the value of this expression as ‘E’.
Substituting, x=tanθx=\tan \theta and y=tanϕy=\tan \phi , we get,
E=tan12[sin1(2tanθ1+tan2θ)+cos1(1tan2ϕ1+tan2ϕ)]E=\tan \dfrac{1}{2}\left[ {{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta } \right)+{{\cos }^{-1}}\left( \dfrac{1-{{\tan }^{2}}\phi }{1+{{\tan }^{2}}\phi } \right) \right]
Applying the formulas: 2tanθ1+tan2θ=sin2θ\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }=\sin 2\theta and (1tan2ϕ1+tan2ϕ)=cos2ϕ\left( \dfrac{1-{{\tan }^{2}}\phi }{1+{{\tan }^{2}}\phi } \right)=\cos 2\phi , we get,
E=tan12[sin1(sin2θ)+cos1(cos2ϕ)]E=\tan \dfrac{1}{2}\left[ {{\sin }^{-1}}\left( \sin 2\theta \right)+{{\cos }^{-1}}\left( \cos 2\phi \right) \right]
Now, using the identity: sin1(sina)=a{{\sin }^{-1}}\left( \sin a \right)=a and cos1(cosb)=b{{\cos }^{-1}}\left( \cos b \right)=b, we have,
E=tan12[2θ+2ϕ] E=tan[2θ+2ϕ2] E=tan[θ+ϕ] \begin{aligned} & E=\tan \dfrac{1}{2}\left[ 2\theta +2\phi \right] \\\ & \Rightarrow E=\tan \left[ \dfrac{2\theta +2\phi }{2} \right] \\\ & \Rightarrow E=\tan \left[ \theta +\phi \right] \\\ \end{aligned}
Applying the formula for tangent of a sum of two angles, given as: tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ\tan \left( \theta +\phi \right)=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }, we have,
E=tanθ+tanϕ1tanθtanϕE=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }
Initially we have assumed: x=tanθx=\tan \theta and y=tanϕy=\tan \phi , therefore, again substituting the values of tanθ\tan \theta and tanϕ\tan \phi in the simplified expression of ‘E’, we get,
E=x+y1xyE=\dfrac{x+y}{1-xy}
Hence, the value of the expression, tan12[sin1(2x1+x2)+cos1(1y21+y2)]\tan \dfrac{1}{2}\left[ {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)+{{\cos }^{-1}}\left( \dfrac{1-{{y}^{2}}}{1+{{y}^{2}}} \right) \right] is x+y1xy\dfrac{x+y}{1-xy}.

Note: It is important to note that we can derive the formulas used above, which are 2tanθ1+tan2θ=sin2θ\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }=\sin 2\theta and (1tan2ϕ1+tan2ϕ)=cos2ϕ\left( \dfrac{1-{{\tan }^{2}}\phi }{1+{{\tan }^{2}}\phi } \right)=\cos 2\phi . Here, we have to break the tangent of the given angle into its ratio of sine and cosine and then we just have to simplify it using certain trigonometric identities. But it will be beneficial for us if we will remember these formulas. It will help in solving the problems in less time. These formulas can be directly used. Note that the conditions: x1,y0\left| x \right|\le 1,y\ge 0 and xy1xy\le 1, given in the question, represent the values of ‘x’ and ‘y’ for which the expression is defined.