Solveeit Logo

Question

Question: Find the value of the following product:\(\tan {{10}^{o}}\tan {{20}^{o}}\tan {{30}^{o}}\tan {{40}^{o...

Find the value of the following product:tan10otan20otan30otan40otan50otan60otan70otan80o\tan {{10}^{o}}\tan {{20}^{o}}\tan {{30}^{o}}\tan {{40}^{o}}\tan {{50}^{o}}\tan {{60}^{o}}\tan {{70}^{o}}\tan {{80}^{o}}
A. 00
B. 1-1
C. 13\dfrac{1}{\sqrt{3}}
D. 11

Explanation

Solution

The given problem is related to trigonometry. Try to remember the basic values of sine, cosine, and tangent of angles which are of the form 90oθ{{90}^{o}}-\theta . and then by solving you can find the answer.
Complete step-by-step Solution:
Let us consider two angles α\alpha and β\beta such that α+β=90o\alpha +\beta ={{90}^{o}}. Here, α\alpha and β\beta are called complementary angles.
Now, we know, sin(90oθ)=cosθ\sin \left( {{90}^{o}}-\theta \right)=\cos \theta and cos(90oθ)=sinθ\cos \left( {{90}^{o}}-\theta \right)=\sin \theta .
Now, when we consider the angles α\alpha and β\beta such that α+β=90o\alpha +\beta ={{90}^{o}} , we get α=90oβ\alpha ={{90}^{o}}-\beta .
So, sinα=sin(90oβ)=cosβ......(i)\sin \alpha =\sin \left( {{90}^{o}}-\beta \right)=\cos \beta ......(i) and cosα=cos(90oβ)=sinβ.....(ii)\cos \alpha =\cos \left( {{90}^{o}}-\beta \right)=\sin \beta .....(ii).
Now, we know, cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }.
So, cotα=cosαsinα....(iii)\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }....(iii).
Now, we will substitute equations (i)(i) and (ii)(ii)in equation(iii)(iii).
On substituting equations (i)(i) and (ii)(ii)in equation(iii)(iii), we get
cotα=cos(90oβ)sin(90oβ)\cot \alpha =\dfrac{\cos \left( {{90}^{o}}-\beta \right)}{\sin \left( {{90}^{o}}-\beta \right)}
So, cotα=sinβcosβ\cot \alpha =\dfrac{\sin \beta }{\cos \beta }
Or, cotα=1cotβ.....(iv)\cot \alpha =\dfrac{1}{\cot \beta }.....(iv)
Now, we know cotβ=1tanβ\cot \beta =\dfrac{1}{\tan \beta }.
We will take tanβ\tan \beta to the left-hand side of the equation and cotβ\cot \beta to the right-hand side of the equation.
So, we get tanβ=1cotβ.....(v)\tan \beta =\dfrac{1}{\cot \beta }.....(v).
Now, we will substitute equation (v)(v) in equation(iv)(iv).
On substituting equation (v)(v) in equation(iv)(iv), we get cotα=tanβ...(vi)\cot \alpha =\tan \beta ...(vi).
Now, we will consider the value of α\alpha to be equal to 10o{{10}^{o}}.
Now, we know, β=90oα\beta ={{90}^{o}}-\alpha .
So, when the value of α\alpha is equal to 10o{{10}^{o}}, then the value of β\beta is given as β=90o10o=80o\beta ={{90}^{o}}-{{10}^{o}}={{80}^{o}}.
Now, from equation(vi)(vi), we have cotα=tanβ\cot \alpha =\tan \beta .
We will substitute the values of α\alpha and β\beta in equation(vi)(vi).
On substituting the values of α\alpha and β\beta in equation(vi)(vi), we get tan80o=cot10o....(vii)\tan {{80}^{o}}=\cot {{10}^{o}}....(vii).
Now, we will consider the value of α\alpha to be equal to 20o{{20}^{o}}.
Now, we know, β=90oα\beta ={{90}^{o}}-\alpha .
So, when the value of α\alpha is equal to 20o{{20}^{o}}, then the value of β\beta is given as β=90o20o=70o\beta ={{90}^{o}}-{{20}^{o}}={{70}^{o}}.
Now, from equation(vi)(vi), we have cotα=tanβ\cot \alpha =\tan \beta .
We will substitute the values of α\alpha and β\beta in equation(vi)(vi).
On substituting the values of α\alpha and β\beta in equation(vi)(vi), we get tan70o=cot20o....(viii)\tan {{70}^{o}}=\cot {{20}^{o}}....(viii).
Similarly, tan60o=tan(90o30o)=cot30o.....(ix)\tan {{60}^{o}}=\tan \left( {{90}^{o}}-{{30}^{o}} \right)=\cot {{30}^{o}}.....(ix) , and tan50o=tan(90o40o)=cot40o......(x)\tan {{50}^{o}}=\tan \left( {{90}^{o}}-{{40}^{o}} \right)=\cot {{40}^{o}}......(x) .
Now, we are asked to find the value of tan10otan20otan30otan40otan50otan60otan70otan80o\tan {{10}^{o}}\tan {{20}^{o}}\tan {{30}^{o}}\tan {{40}^{o}}\tan {{50}^{o}}\tan {{60}^{o}}\tan {{70}^{o}}\tan {{80}^{o}}. From equation (vii),(viii),(ix)\left( vii \right),\left( viii \right),\left( ix \right) and (x)\left( x \right) , we get:
tan10otan20otan30otan40otan50otan60otan70otan80o\tan {{10}^{o}}\tan {{20}^{o}}\tan {{30}^{o}}\tan {{40}^{o}}\tan {{50}^{o}}\tan {{60}^{o}}\tan {{70}^{o}}\tan {{80}^{o}}
=tan10otan20otan30otan40ocot40ocot30ocot20ocot10o=\tan {{10}^{o}}\tan {{20}^{o}}\tan {{30}^{o}}\tan {{40}^{o}}\cot {{40}^{o}}\cot {{30}^{o}}\cot {{20}^{o}}\cot {{10}^{o}}
=tan10ocot10otan20ocot20otan30ocot30otan40ocot40o=\tan {{10}^{o}}\cot {{10}^{o}}\tan {{20}^{o}}\cot {{20}^{o}}\tan {{30}^{o}}\cot {{30}^{o}}\tan {{40}^{o}}\cot {{40}^{o}}
=1×1×1×1=1\times 1\times 1\times 1
=1=1
So, the value of tan10otan20otan30otan40otan50otan60otan70otan80o\tan {{10}^{o}}\tan {{20}^{o}}\tan {{30}^{o}}\tan {{40}^{o}}\tan {{50}^{o}}\tan {{60}^{o}}\tan {{70}^{o}}\tan {{80}^{o}} is 11 .
Hence, option D. is the correct answer.

Note: Students generally get confused between cos(90oθ)=sinθ\cos \left( {{90}^{o}}-\theta \right)=\sin \theta and cos(90o+θ)=sinθ\cos \left( {{90}^{o}}+\theta \right)=-\sin \theta . Sometimes, by mistake students write cos(90oθ)\cos \left( {{90}^{o}}-\theta \right) as sinθ-\sin \theta and cos(90o+θ)\cos \left( {{90}^{o}}+\theta \right) as sinθ\sin \theta , which is wrong . Sign mistakes are common but can result in getting a wrong answer. Hence, students should be careful while using trigonometric formulae and should take care of sign conventions.