Solveeit Logo

Question

Question: Find the value of the following \(\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\cos }^3}...

Find the value of the following (0π4dxcos3x2sin2x)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2\sin 2x} }}} } \right)

Explanation

Solution

In this question we need to find the integration of (0π4dxcos3x2sin2x)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2\sin 2x} }}} } \right), for that firstly we will use the formula: sin2x=2sinxcosx\sin 2x = 2\sin x\cos x. After that we will change the cosine into sec using reciprocal identity to simplify the denominator. Now we will be also use identities like sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x and sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x. Next, we will find the integration using the substitution method by taking tanx = t and then evaluate it further.

Complete step-by-step answer:
We have been asked to find the integration of (0π4dxcos3x2sin2x)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2\sin 2x} }}} } \right),
So, firstly in order to find the integration we will change sin2x using the formula: sin2x=2sinxcosx\sin 2x = 2\sin x\cos x,
Now it becomes: (0π4dxcos3x2×2sinxcosx)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2 \times 2\sin x\cos x} }}} } \right)
Now we will multiply and divide by cos x in the denominator,
So, we will get: (0π4dxcos4x2×2sinxcosxcosx)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\cos }^4}x\sqrt {\dfrac{{2 \times 2\sin x\cos x}}{{\cos x}}} }}} } \right)
Now as we know secx=1cosx\sec x = \dfrac{1}{{\cos x}}
So, the equation will become, (0π4sec4xdx2×2sinxcosxcosx)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{{\sec }^4}xdx}}{{\sqrt {\dfrac{{2 \times 2\sin x\cos x}}{{\cos x}}} }}} } \right)
Now we will write sec4x=sec2x.sec2x{\sec ^4}x = {\sec ^2}x.{\sec ^2}x
So, the equation would become, (0π4sec2x.sec2xdx2×2sinxcosxcosx)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{{\sec }^2}x.{{\sec }^2}xdx}}{{\sqrt {\dfrac{{2 \times 2\sin x\cos x}}{{\cos x}}} }}} } \right)
Now we will be using the identity, sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x and we know sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x
So, the equation would be: (0π4(sec2x.(1+tan2x))dx4tanx)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{({{\sec }^2}x.(1 + {{\tan }^2}x))dx}}{{\sqrt {4\tan x} }}} } \right)
Now let tan x=t,
Differentiate with respect to x,
So, sec2xdx=dt{\sec ^2}xdx = dt,
Now keep these values in (0π4(sec2x.(1+tan2x))dx4tanx)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{({{\sec }^2}x.(1 + {{\tan }^2}x))dx}}{{\sqrt {4\tan x} }}} } \right),
The equation would be: (0π4(1+t2)dt4t)\left( {\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{(1 + {\operatorname{t} ^2})dt}}{{\sqrt {4t} }}} } \right)
Now we will take 4 out of the root,
So, the equation would be: (120π4(1+t2)dtt)\left( {\dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{(1 + {\operatorname{t} ^2})dt}}{{\sqrt t }}} } \right)
Now we will divide the numerator by the denominator,
The equation would be: (120π4(t12+t212)dt)\left( {\dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {({t^{\dfrac{{ - 1}}{2}}}} + {t^{2 - \dfrac{1}{2}}})dt} \right)
Now simplifying the equation: (120π4(t12+t32)dt)\left( {\dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {({t^{\dfrac{{ - 1}}{2}}}} + {t^{\dfrac{3}{2}}})dt} \right)
Now integrating the equation using the formula:xndx=xn+1n+1+c\int {{x^n}dx = } \dfrac{{{x^{n + 1}}}}{{n + 1}} + c
The limits would also change as if we put the limits in tan x=t. when we will keep the upper limit that is π4\dfrac{\pi }{4}in place of x we will get 1 and when the lower limit which is 0 we will get 0.
The equation would be:12[t12+112+1+t32+132+1]10\dfrac{1}{2}{\left[ {\dfrac{{{t^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} + \dfrac{{{t^{\dfrac{3}{2} + 1}}}}{{\dfrac{3}{2} + 1}}} \right]^1}_0
Solving it further,12[t1212+t5252]10\dfrac{1}{2}{\left[ {\dfrac{{{t^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + \dfrac{{t\dfrac{5}{2}}}{{\dfrac{5}{2}}}} \right]^1}_0
So, the value after simplification comes out to be:22[t12+t525]10\dfrac{2}{2}{\left[ {{t^{\dfrac{1}{2}}} + \dfrac{{{t^{\dfrac{5}{2}}}}}{5}} \right]^1}_0
Now we will put the limits,[(1+15)(0+0)]\left[ {\left( {1 + \dfrac{1}{5}} \right) - \left( {0 + 0} \right)} \right]
So, the answer would be-65\dfrac{6}{5}

Note: In this question we can keep the value of t as tan x after integrating but then do not change the limits as per tan x = t. Also be careful while keeping the limits as the chances of mistakes are more over there. In the beginning do change sin2x to 2sinxcosx otherwise it will become lengthy.