Question
Question: Find the value of the following integral \(\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{...
Find the value of the following integral 0∫2πsin4x+cos4xxsinxcosxdx
Solution
To solve this integral we will first use the property of definite integral which says a∫bf(x)dx=a∫bf(a+b−x) hence using this we can further simplify the equation and get the value of integral as 4π0∫2πcos4x+sin4xcosxsinxdx. Now here we will use a2+b2=(a+b)2−2ab to further simplify the equation and convert the terms to sin2xand cos2x with the formula sin2x=2sinxcosx and sin2x+cos2x=1 after this we will substitute cos2x=t and solve the definite integral.
Complete step-by-step answer:
The given integral is 0∫2πsin4x+cos4xxsinxcosxdx
Now by the property of definite integral we know that a∫bf(x)dx=a∫bf(a+b−x)
Hence we get.
0∫2πsin4x+cos4xxsinxcosxdx=0∫2πsin4(0+2π−x)+cos4(0+2π−x)(0+2π−x)sin(0+2π−x)cos(0+2π−x)dx
Now we know that sin(2π−x)=cosx and cos(2π−x)=sinx
Hence we get
0∫2πsin4x+cos4xxsinxcosxdx=0∫2πcos4x+sin4x(2π−x)cosxsinxdx=0∫2πcos4x+sin4x2πcosxsinx−xcosxsinxdx
0∫2πsin4x+cos4xxsinxcosxdx=2π0∫2πcos4x+sin4xcosxsinxdx−0∫2πcos4x+sin4xxcosxsinxdx