Solveeit Logo

Question

Question: Find the value of the following integral \(\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{...

Find the value of the following integral 0π2xsinxcosxsin4x+cos4xdx\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}

Explanation

Solution

To solve this integral we will first use the property of definite integral which says abf(x)dx=abf(a+bx)\int\limits_{a}^{b}{f(x)dx=}\int\limits_{a}^{b}{f(a+b-x)} hence using this we can further simplify the equation and get the value of integral as π40π2cosxsinxcos4x+sin4xdx\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}. Now here we will use a2+b2=(a+b)22ab{{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab to further simplify the equation and convert the terms to sin2x\sin 2xand cos2x\cos 2x with the formula sin2x=2sinxcosx\sin 2x=2\sin x\cos x and sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 after this we will substitute cos2x=t\cos 2x=t and solve the definite integral.

Complete step-by-step answer:
The given integral is 0π2xsinxcosxsin4x+cos4xdx\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}
Now by the property of definite integral we know that abf(x)dx=abf(a+bx)\int\limits_{a}^{b}{f(x)dx=}\int\limits_{a}^{b}{f(a+b-x)}
Hence we get.
0π2xsinxcosxsin4x+cos4xdx=0π2(0+π2x)sin(0+π2x)cos(0+π2x)sin4(0+π2x)+cos4(0+π2x)dx\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 0+\dfrac{\pi }{2}-x \right)\sin \left( 0+\dfrac{\pi }{2}-x \right)\cos \left( 0+\dfrac{\pi }{2}-x \right)}{{{\sin }^{4}}\left( 0+\dfrac{\pi }{2}-x \right)+{{\cos }^{4}}\left( 0+\dfrac{\pi }{2}-x \right)}dx}
Now we know that sin(π2x)=cosx\sin \left( \dfrac{\pi }{2}-x \right)=\cos x and cos(π2x)=sinx\cos \left( \dfrac{\pi }{2}-x \right)=\sin x
Hence we get
0π2xsinxcosxsin4x+cos4xdx=0π2(π2x)cosxsinxcos4x+sin4xdx =0π2π2cosxsinxxcosxsinxcos4x+sin4xdx \begin{aligned} & \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( \dfrac{\pi }{2}-x \right)\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\\ & =\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{\pi }{2}\cos x\sin x-x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\\ \end{aligned}
0π2xsinxcosxsin4x+cos4xdx=π20π2cosxsinxcos4x+sin4xdx0π2xcosxsinxcos4x+sin4xdx\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}-\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}

& \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\\ & \Rightarrow 2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\\ \end{aligned}$$ Let us call $$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$$ as I. Hence now we have $$I=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}............(1)$$ Now we know that $\begin{aligned} & {{a}^{2}}+2ab+{{b}^{2}}={{(a+b)}^{2}} \\\ & {{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab \\\ \end{aligned}$ Hence using this we get ${{\sin }^{4}}x+{{\cos }^{4}}x={{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x$ Substituting this in (1) we get. $I=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{(1)-2{{\sin }^{2}}x{{\cos }^{2}}x}dx}$ Now here we let us multiply the numerator by 2 and divide it by 2. $I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-2{{\cos }^{2}}x{{\sin }^{2}}x}dx}$ Also in the denominator we multiply by 2 and divide by 2 to the term $2{{\cos }^{2}}x{{\sin }^{2}}x$. Hence now we get $I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-\dfrac{4{{\cos }^{2}}x{{\sin }^{2}}x}{2}}dx}$ $\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-\dfrac{{{(2\sin x\cos x)}^{2}}}{2}}dx}$ Now we know that $\sin 2x=2\sin x\cos x$. Using this formula we get $$\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin 2x}{1-\dfrac{{{(\sin 2x)}^{2}}}{2}}dx}$$ Taking LCM in the denominator we get $$\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin 2x}{\dfrac{2-({{\sin }^{2}}2x)}{2}}dx}$$ Now we know the trigonometric identity that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . $$\begin{aligned} & I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{2-(1-{{\cos }^{2}}2x)}dx} \\\ & I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{2-1+{{\cos }^{2}}2x}dx} \\\ & I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{1+{{\cos }^{2}}2x}dx} \\\ \end{aligned}$$ Now let us substitute $\cos 2x=t$ then we get $-2\sin 2x=dt$ Also note that as $\begin{aligned} & x\to 0,t\to \cos 2(0)=1 \\\ & x\to \dfrac{\pi }{2}t\to \cos (2\dfrac{\pi }{2})=\cos \pi =-1 \\\ \end{aligned}$ Hence using this in out integral we get $$I=\dfrac{\pi }{8}\int\limits_{1}^{-1}{\dfrac{-dt}{1+{{t}^{2}}}dx}$$ We know that the integral $\int{\dfrac{1}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x$. $$\begin{aligned} & I=-\dfrac{\pi }{8}{{[{{\tan }^{-1}}x]}^{-1}}_{1} \\\ & I=-\dfrac{\pi }{8}\left[ {{\tan }^{-1}}(-1)-{{\tan }^{-1}}(1) \right] \\\ & I=-\dfrac{\pi }{8}\left[ -\dfrac{\pi }{4}-\dfrac{\pi }{4} \right] \\\ & I=-\dfrac{\pi }{8}\left[ \dfrac{-\pi }{2} \right] \\\ & I=\dfrac{{{\pi }^{2}}}{16} \\\ \end{aligned}$$ Hence we have the value of given integral $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$ is $\dfrac{{{\pi }^{2}}}{16}$ **Note:** Now while using method of substitution for integration note that the limits of the integration also change. Hence if we substitute t as for f(x) check and the limits of x are given as a to b. then the new limit for t becomes f(a) to f(b).