Solveeit Logo

Question

Question: Find the value of the following integral. \[\int\limits_0^1 {4{x^3}} \left\\{ {\dfrac{{{d^2}}}{{d{...

Find the value of the following integral.
\int\limits_0^1 {4{x^3}} \left\\{ {\dfrac{{{d^2}}}{{d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\\}dx

Explanation

Solution

In the integral calculus, we are to find a function whose differential is given. Thus, integration is a process that is the inverse of differentiation.
Let dF(x)dx=f(x)\dfrac{{dF\left( x \right)}}{{dx}} = f\left( x \right), then f(x)dx=F(x)+C\smallint f\left( x \right)dx = F\left( x \right) + C , where C is the integration constant.
Use integration by parts in question involving the integration of the product of two functions.
Integration by parts
“ The integral of the product of two functions = (first function) x (integral of the second function) – Integral of [differential coefficient of the first function ) x (integral of the second function)]”
i.e. f1(x)f2(x)=f1(x)f2(x)(f1(x)f2(x))dx\int {{f_1}\left( x \right)} \cdot {f_2}\left( x \right) = {f_1}\left( x \right)\int {{f_2}\left( x \right)} - \int {\left( {{f_1}^\prime \left( x \right) \cdot {f_2}\left( x \right)} \right)} dx
Tip: by ILATE choose the first function (Preference :: Inverse Trigonometric > Logarithmic Function > Algebra > Trigonometric Functions > Exponential )
The definite integral is calculated whenever a function ff is given over the range [a,b]\left[ {a,b} \right] , where aa and bb are called limits of integration, aa being the lower limit and bb being the upper limit. I.e.:
abf(x)dx=F(b)F(a)\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)
In other words, definite integral (integral whose limits are given) is given by upper limits minus lower limits.

Complete step-by-step answer:
Let given definite Integral
I = \int\limits_0^1 {4{x^3}} \left\\{ {\dfrac{{{d^2}}}{{d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\\}dx
Using integration by parts: f1(x)f2(x)=f1(x)f2(x)(f1(x)f2(x))dx\int {{f_1}\left( x \right)} \cdot {f_2}\left( x \right) = {f_1}\left( x \right)\int {{f_2}\left( x \right)} - \int {\left( {{f_1}^\prime \left( x \right) \cdot {f_2}\left( x \right)} \right)} dx
Take {f_1}\left( x \right) = 4{x^3};{f_2}\left( x \right) = \left\\{ {\dfrac{{{d^2}}}{{d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\\}
f1(x)=4×3x2=12x2{f_1}^\prime \left( x \right) = 4 \times 3{x^2} = 12{x^2} (using differentiation: d(x)ndx=nxn1\dfrac{{d{{\left( x \right)}^n}}}{{dx}} = n{x^{n - 1}} )
f2(x)=d2dx2(1x2)5=ddx(1x2)5\int {{f_2}\left( x \right)} = \int {\dfrac{{{d^2}}}{{d{x^2}}}} {\left( {1 - {x^2}} \right)^5} = \dfrac{d}{{dx}}{\left( {1 - {x^2}} \right)^5}
Thus, I = \left. {\left[ {4{x^3}\left( {\dfrac{d}{{dx}}{{\left( {1 - {x^2}} \right)}^5}} \right) - \int {\left\\{ {12{x^2}\left( {\dfrac{d}{{dx}}{{\left( {1 - {x^2}} \right)}^5}} \right)} \right\\}dx} } \right]} \right|_0^1
Solving differentiation: ddx(1x2)5\dfrac{d}{{dx}}{\left( {1 - {x^2}} \right)^5}
Using differential: d(x)ndx=nxn1\dfrac{{d{{\left( x \right)}^n}}}{{dx}} = n{x^{n - 1}}
ddx(1x2)5\dfrac{d}{{dx}}{\left( {1 - {x^2}} \right)^5}
5(1x2)4(2x)\Rightarrow 5{\left( {1 - {x^2}} \right)^4}\left( { - 2x} \right)
Hence, I = \left. {\left[ {4{x^3}\left( {5{{\left( {1 - {x^2}} \right)}^4}\left( { - 2x} \right)} \right) - \int {\left\\{ {12{x^2}\left( {\dfrac{d}{{dx}}{{\left( {1 - {x^2}} \right)}^5}} \right)} \right\\}dx} } \right]} \right|_0^1
I = \left. {\left[ { - 40{x^4}{{\left( {1 - {x^2}} \right)}^4} - \int {\left\\{ {12{x^2}\left( {\dfrac{d}{{dx}}{{\left( {1 - {x^2}} \right)}^5}} \right)} \right\\}dx} } \right]} \right|_0^1
Solve integral \int {\left\\{ {12{x^2}\left( {\dfrac{d}{{dx}}{{\left( {1 - {x^2}} \right)}^5}} \right)} \right\\}dx} separately to reduce errors in calculation.
Let {I_1} = \int {\left\\{ {12{x^2}\left( {\dfrac{d}{{dx}}{{\left( {1 - {x^2}} \right)}^5}} \right)} \right\\}dx}
Using integration by parts: f1(x)f2(x)=f1(x)f2(x)(f1(x)f2(x))dx\int {{f_1}\left( x \right)} \cdot {f_2}\left( x \right) = {f_1}\left( x \right)\int {{f_2}\left( x \right)} - \int {\left( {{f_1}^\prime \left( x \right) \cdot {f_2}\left( x \right)} \right)} dx
Take {f_1}\left( x \right) = 12{x^2};{f_2}\left( x \right) = \left\\{ {\dfrac{d}{{dx}}{{\left( {1 - {x^2}} \right)}^5}} \right\\}
f1(x)=12×2x=24x{f_1}^\prime \left( x \right) = 12 \times 2x = 24x (using differentiation: d(x)ndx=nxn1\dfrac{{d{{\left( x \right)}^n}}}{{dx}} = n{x^{n - 1}} )
f2(x)=ddx(1x2)5=(1x2)5\int {{f_2}\left( x \right)} = \int {\dfrac{d}{{dx}}} {\left( {1 - {x^2}} \right)^5} = {\left( {1 - {x^2}} \right)^5}
Thus, I1=12x2(1x2)524x(1x2)5dx{I_1} = 12{x^2}{\left( {1 - {x^2}} \right)^5} - \int {24x{{\left( {1 - {x^2}} \right)}^5}} dx
Using binomial expansion expand: (1x2)5{\left( {1 - {x^2}} \right)^5}
(a+b)n=C(n,0)an+C(n,1)an1b+C(n,2)an2b2+...+C(n,n)bn{\left( {a + b} \right)^n} = C\left( {n,0} \right){a^n} + C\left( {n,1} \right){a^{n - 1}}b + C\left( {n,2} \right){a^{n - 2}}{b^2} + ... + C(n,n){b^n}
On comparing (1x2)5{\left( {1 - {x^2}} \right)^5}with (a+b)n{\left( {a + b} \right)^n}
a=1; b=(x2); n=5  a = 1; \\\ b = \left( { - {x^2}} \right); \\\ n = 5 \\\
(1+(x2))5 =C(5,0)15+C(5,1)14(x2)+C(5,2)13(x2)2+C(5,3)12(x2)3+C(5,4)11(x2)4+C(5,5)(x2)5  {\left( {1 + \left( { - {x^2}} \right)} \right)^5} \\\ = C\left( {5,0} \right){1^5} + C\left( {5,1} \right){1^4}\left( { - {x^2}} \right) + C\left( {5,2} \right){1^3}{\left( { - {x^2}} \right)^2} + C\left( {5,3} \right){1^2}{\left( { - {x^2}} \right)^3} + C\left( {5,4} \right){1^1}{\left( { - {x^2}} \right)^4} + C\left( {5,5} \right){\left( { - {x^2}} \right)^5} \\\
We know, combination: C(n,r)=n!r!(nr)!C(n,r) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
C(5,0)=C(5,5)=1C\left( {5,0} \right) = C\left( {5,5} \right) = 1
C(5,1)=C(5,4)=5C\left( {5,1} \right) = C\left( {5,4} \right) = 5
C(5,2)=C(5,3)=10C\left( {5,2} \right) = C\left( {5,3} \right) = 10
Hence, (1+(x2))5=15x2+10x410x6+5x8x10{\left( {1 + \left( { - {x^2}} \right)} \right)^5} = 1 - 5{x^2} + 10{x^4} - 10{x^6} + 5{x^8} - {x^{10}}
Thus, substituting in integral I1{I_1}
I1=12x2(1x2)524x(15x2+10x410x6+5x8x10)dx{I_1} = 12{x^2}{\left( {1 - {x^2}} \right)^5} - \int {24x\left( {1 - 5{x^2} + 10{x^4} - 10{x^6} + 5{x^8} - {x^{10}}} \right)} dx
I1=12x2(1x2)5(24x120x3+240x5240x7+120x924x11)dx{I_1} = 12{x^2}{\left( {1 - {x^2}} \right)^5} - \int {\left( {24x - 120{x^3} + 240{x^5} - 240{x^7} + 120{x^9} - 24{x^{11}}} \right)} dx
Using the integration: xn=xn+1n+1\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}}
I1=12x2(1x2)5(24x22120x44+240x66240x88+120x101024x1212){I_1} = 12{x^2}{\left( {1 - {x^2}} \right)^5} - \left( {24\dfrac{{{x^2}}}{2} - 120\dfrac{{{x^4}}}{4} + 240\dfrac{{{x^6}}}{6} - 240\dfrac{{{x^8}}}{8} + 120\dfrac{{{x^{10}}}}{{10}} - 24\dfrac{{{x^{12}}}}{{12}}} \right)
I1=12x2(1x2)5(12x230x4+40x630x8+12x102x12){I_1} = 12{x^2}{\left( {1 - {x^2}} \right)^5} - \left( {12{x^2} - 30{x^4} + 40{x^6} - 30{x^8} + 12{x^{10}} - 2{x^{12}}} \right)
Now substitute I1{I_1}
We know, I=[40x4(1x2)4I1]01I = \left. {\left[ { - 40{x^4}{{\left( {1 - {x^2}} \right)}^4} - {I_1}} \right]} \right|_0^1

Substituting the integral I1{I_1}
I = \left. {\left[ { - 40{x^4}{{\left( {1 - {x^2}} \right)}^4} - \left\\{ {12{x^2}{{\left( {1 - {x^2}} \right)}^5} - \left( {12{x^2} - 30{x^4} + 40{x^6} - 30{x^8} + 12{x^{10}} - 2{x^{12}}} \right)} \right\\}} \right]} \right|_0^1
I=[40x4(1x2)412x2(1x2)5+12x230x4+40x630x8+12x102x12]01I = \left. {\left[ { - 40{x^4}{{\left( {1 - {x^2}} \right)}^4} - 12{x^2}{{\left( {1 - {x^2}} \right)}^5} + 12{x^2} - 30{x^4} + 40{x^6} - 30{x^8} + 12{x^{10}} - 2{x^{12}}} \right]} \right|_0^1
Solving limits of the integral:

I=[40(1)4(112)412(1)2(112)5+12(1)230(1)4+40(1)630(1)8+12(1)102(1)12]  [40(0)4(102)412(0)2(102)5+12(0)230(0)4+40(0)630(0)8+12(0)102(0)12]  I = \left[ { - 40{{\left( 1 \right)}^4}{{\left( {1 - {1^2}} \right)}^4} - 12{{\left( 1 \right)}^2}{{\left( {1 - {1^2}} \right)}^5} + 12{{\left( 1 \right)}^2} - 30{{\left( 1 \right)}^4} + 40{{\left( 1 \right)}^6} - 30{{\left( 1 \right)}^8} + 12{{\left( 1 \right)}^{10}} - 2{{\left( 1 \right)}^{12}}} \right] - \\\ {\text{ }}\left[ { - 40{{\left( 0 \right)}^4}{{\left( {1 - {0^2}} \right)}^4} - 12{{\left( 0 \right)}^2}{{\left( {1 - {0^2}} \right)}^5} + 12{{\left( 0 \right)}^2} - 30{{\left( 0 \right)}^4} + 40{{\left( 0 \right)}^6} - 30{{\left( 0 \right)}^8} + 12{{\left( 0 \right)}^{10}} - 2{{\left( 0 \right)}^{12}}} \right] \\\

00+1230+4030+122 6462 2  \Rightarrow 0 - 0 + 12 - 30 + 40 - 30 + 12 - 2 \\\ \Rightarrow 64 - 62 \\\ \Rightarrow 2 \\\
The value of \int\limits_0^1 {4{x^3}} \left\\{ {\dfrac{{{d^2}}}{{d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\\}dx is 2.

Note:
Carefully do the calculation, emphasize on each and every step.
Steps involving many terms and variables of different power should be dealt with carefully.
Students are likely to make mistakes while substituting I1{I_1}in I=[40x4(1x2)4I1]01I = \left. {\left[ { - 40{x^4}{{\left( {1 - {x^2}} \right)}^4} - {I_1}} \right]} \right|_0^1. Notice that there is a minus sign before I1{I_1}. The calculation will go wrong if you ignore it.
In the step: I1=12x2(1x2)5(24x120x3+240x5240x7+120x924x11)dx{I_1} = 12{x^2}{\left( {1 - {x^2}} \right)^5} - \int {\left( {24x - 120{x^3} + 240{x^5} - 240{x^7} + 120{x^9} - 24{x^{11}}} \right)} dx, we have not expanded (1x2)5{\left( {1 - {x^2}} \right)^5} as it is not included in integral, we can leave it as it is and find limits when requires.

Alternate method:
I = \int\limits_0^1 {4{x^3}} \left\\{ {\dfrac{{{d^2}}}{{d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\\}dx
The part d2dx2(1x2)5\dfrac{{{d^2}}}{{d{x^2}}}{\left( {1 - {x^2}} \right)^5} in given integral is the double differentiation of the function (1x2)5{\left( {1 - {x^2}} \right)^5} .
Therefore, solve the differentiation before and substitute it in the given integral.
Let y=(1x2)5y = {\left( {1 - {x^2}} \right)^5}
On differentiating both sides with respect to xx .
Using differential: d(x)ndx=nxn1\dfrac{{d{{\left( x \right)}^n}}}{{dx}} = n{x^{n - 1}}
dydx=5(1x2)4(2x)\dfrac{{dy}}{{dx}} = 5{\left( {1 - {x^2}} \right)^4}\left( { - 2x} \right)
dydx=10x(1x2)4\dfrac{{dy}}{{dx}} = - 10x{\left( {1 - {x^2}} \right)^4}
On differentiating both sides with respect to xx .
Using product rule: ddxu(x)v(x)=u(x)v(x)+u(x)v(x)\dfrac{d}{{dx}}u\left( x \right) \cdot v\left( x \right) = u'\left( x \right) \cdot v\left( x \right) + u\left( x \right) \cdot v'\left( x \right)
d2ydx2=10(1x2)410x(4)(1x2)3(2x)\dfrac{{{d^2}y}}{{d{x^2}}} = - 10{\left( {1 - {x^2}} \right)^4} - 10x\left( 4 \right){\left( {1 - {x^2}} \right)^3}\left( { - 2x} \right)
10(1x2)4+80x2(1x2)3\Rightarrow - 10{\left( {1 - {x^2}} \right)^4} + 80{x^2}{\left( {1 - {x^2}} \right)^3}
Expanding (1x2)3{\left( {1 - {x^2}} \right)^3} using identity: (ab)3=a3b33a2b+3ab2{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}
On comparing (1x2)3{\left( {1 - {x^2}} \right)^3}with (ab)3{\left( {a - b} \right)^3}
a=1; b=x2  a = 1; \\\ b = {x^2} \\\
(1x2)3=13(x2)33(1)2x2+3(1)(x2)2{\left( {1 - {x^2}} \right)^3} = {1^3} - {\left( {{x^2}} \right)^3} - 3{\left( 1 \right)^2}{x^2} + 3\left( 1 \right){\left( {{x^2}} \right)^2}
1x63x2+3x4\Rightarrow 1 - {x^6} - 3{x^2} + 3{x^4}
Expanding (1x2)4{\left( {1 - {x^2}} \right)^4}using binomial expansion:
(a+b)n=C(n,0)an+C(n,1)an1b+C(n,2)an2b2+...+C(n,n)bn{\left( {a + b} \right)^n} = C\left( {n,0} \right){a^n} + C\left( {n,1} \right){a^{n - 1}}b + C\left( {n,2} \right){a^{n - 2}}{b^2} + ... + C(n,n){b^n}
On comparing (1x2)4{\left( {1 - {x^2}} \right)^4}with (a+b)n{\left( {a + b} \right)^n}
a=1; b=(x2); n=4  a = 1; \\\ b = \left( { - {x^2}} \right); \\\ n = 4 \\\
(1+(x2))4 =C(4,0)14+C(4,1)13(x2)+C(4,2)12(x2)2+C(4,3)11(x2)3+C(4,4)(x2)4  {\left( {1 + \left( { - {x^2}} \right)} \right)^4} \\\ = C\left( {4,0} \right){1^4} + C\left( {4,1} \right){1^3}\left( { - {x^2}} \right) + C\left( {4,2} \right){1^2}{\left( { - {x^2}} \right)^2} + C\left( {4,3} \right){1^1}{\left( { - {x^2}} \right)^3} + C\left( {4,4} \right){\left( { - {x^2}} \right)^4} \\\
We know, combination: C(n,r)=n!r!(nr)!C(n,r) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
C(4,0)=C(4,4)=1C\left( {4,0} \right) = C\left( {4,4} \right) = 1
C(4,1)=C(4,3)=4C\left( {4,1} \right) = C\left( {4,3} \right) = 4
C(4,2)=6C\left( {4,2} \right) = 6
(1+(x2))4=14x2+6x44x6+x8{\left( {1 + \left( { - {x^2}} \right)} \right)^4} = 1 - 4{x^2} + 6{x^4} - 4{x^6} + {x^8}
On substituting expansion of (1x2)4{\left( {1 - {x^2}} \right)^4} and (1x2)3{\left( {1 - {x^2}} \right)^3} in d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}
d2ydx2=10(1x2)4+80x2(1x2)3\dfrac{{{d^2}y}}{{d{x^2}}} = - 10{\left( {1 - {x^2}} \right)^4} + 80{x^2}{\left( {1 - {x^2}} \right)^3}
10(14x2+6x44x6+x8)+80x2(1x63x2+3x4) 10+40x260x4+40x610x8+80x280x8240x4+240x6 10+120x2300x4+280x690x8  \Rightarrow - 10\left( {1 - 4{x^2} + 6{x^4} - 4{x^6} + {x^8}} \right) + 80{x^2}\left( {1 - {x^6} - 3{x^2} + 3{x^4}} \right) \\\ \Rightarrow - 10 + 40{x^2} - 60{x^4} + 40{x^6} - 10{x^8} + 80{x^2} - 80{x^8} - 240{x^4} + 240{x^6} \\\ \Rightarrow - 10 + 120{x^2} - 300{x^4} + 280{x^6} - 90{x^8} \\\
Substituting d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} in given integral:

I = \int\limits_0^1 {4{x^3}} \left\\{ {\dfrac{{{d^2}}}{{d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\\}dx
I=01[4x3(10+120x2300x4+280x690x8)]dxI = \int\limits_0^1 {\left[ {4{x^3}\left( { - 10 + 120{x^2} - 300{x^4} + 280{x^6} - 90{x^8}} \right)} \right]} dx
01[40x3+480x51200x7+1120x9360x11]dx\Rightarrow \int\limits_0^1 {\left[ { - 40{x^3} + 480{x^5} - 1200{x^7} + 1120{x^9} - 360{x^{11}}} \right]} dx
Using the integration: xn=xn+1n+1\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}}

I=[40x44+480x661200x88+1120x1010360x1212]01 [10x4+80x6150x8+112x1030x12]01  I = \left. {\left[ { - 40\dfrac{{{x^4}}}{4} + 480\dfrac{{{x^6}}}{6} - 1200\dfrac{{{x^8}}}{8} + 1120\dfrac{{{x^{10}}}}{{10}} - 360\dfrac{{{x^{12}}}}{{12}}} \right]} \right|_0^1 \\\ \Rightarrow \left. {\left[ { - 10{x^4} + 80{x^6} - 150{x^8} + 112{x^{10}} - 30{x^{12}}} \right]} \right|_0^1 \\\

On solving limits:

I=[10(1)4+80(1)6150(1)8+112(1)1030(1)12]  [10(0)4+80(0)6150(0)8+112(0)1030(0)12]  I = \left[ { - 10{{\left( 1 \right)}^4} + 80{{\left( 1 \right)}^6} - 150{{\left( 1 \right)}^8} + 112{{\left( 1 \right)}^{10}} - 30{{\left( 1 \right)}^{12}}} \right] - \\\ {\text{ }}\left[ { - 10{{\left( 0 \right)}^4} + 80{{\left( 0 \right)}^6} - 150{{\left( 0 \right)}^8} + 112{{\left( 0 \right)}^{10}} - 30{{\left( 0 \right)}^{12}}} \right] \\\

I=10+80150+11230 192190 2  I = - 10 + 80 - 150 + 112 - 30 \\\ \Rightarrow 192 - 190 \\\ \Rightarrow 2 \\\