Solveeit Logo

Question

Question: Find the value of the following expression using the trigonometric identities and properties \(\d...

Find the value of the following expression using the trigonometric identities and properties
sec2(90θ)cot2θ2(sin225+sin265)+2sin230tan232tan2583(sec233cot257)\dfrac{{{\sec }^{2}}\left( 90-\theta \right)-{{\cot }^{2}}\theta }{2\left( {{\sin }^{2}}{{25}^{{}^\circ }}+{{\sin }^{2}}{{65}^{{}^\circ }} \right)}+\dfrac{2{{\sin }^{2}}{{30}^{{}^\circ }}{{\tan }^{2}}{{32}^{{}^\circ }}{{\tan }^{2}}{{58}^{{}^\circ }}}{3\left( {{\sec }^{2}}{{33}^{{}^\circ }}-{{\cot }^{2}}{{57}^{{}^\circ }} \right)}.

Explanation

Solution

Hint:We will evaluate the given trigonometric function using some basic trigonometry formulas and trigonometric standard angles. Following are some of the formula used
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta
cot2θ+1=cosec2θ{{\cot }^{2}}\theta +1={{\operatorname{cosec}}^{2}}\theta , also
Some trigonometric conversions are as follows
sin(90θ)=cosθ\sin \left( 90-\theta \right)=\cos \theta
cos(90θ)=sinθ\cos \left( 90-\theta \right)=\sin \theta
tan(90θ)=cotθ\tan \left( 90-\theta \right)=\cot \theta
cot(90θ)=tanθ\cot \left( 90-\theta \right)=\tan \theta
sec(90θ)=cosecθ\sec \left( 90-\theta \right)=\operatorname{cosec}\theta
cosec(90θ)=secθ\operatorname{cosec}\left( 90-\theta \right)=\sec \theta
Apply these formulas and simplify it to get the value for the question.

Complete step-by-step answer:
It is given in the question that we have to evaluate the following expression sec2(90θ)cot2θ2(sin225+sin265)+2sin230tan232tan2583(sec233cot257)\dfrac{{{\sec }^{2}}\left( 90-\theta \right)-{{\cot }^{2}}\theta }{2\left( {{\sin }^{2}}{{25}^{{}^\circ }}+{{\sin }^{2}}{{65}^{{}^\circ }} \right)}+\dfrac{2{{\sin }^{2}}{{30}^{{}^\circ }}{{\tan }^{2}}{{32}^{{}^\circ }}{{\tan }^{2}}{{58}^{{}^\circ }}}{3\left( {{\sec }^{2}}{{33}^{{}^\circ }}-{{\cot }^{2}}{{57}^{{}^\circ }} \right)}.
We know that sec(90θ)=cosecθ\sec \left( 90-\theta \right)=\operatorname{cosec}\theta and sin(90θ)=cosθ\sin \left( 90-\theta \right)=\cos \theta . So, we can write sec2(90θ)=cosec2θ{{\sec }^{2}}\left( 90-\theta \right)={{\operatorname{cosec}}^{2}}\theta and sin265=sin2(9065)=cos25{{\sin }^{2}}{{65}^{{}^\circ }}={{\sin }^{2}}\left( {{90}^{{}^\circ }}-{{65}^{{}^\circ }} \right)=\cos {{25}^{{}^\circ }} we get
= cosec2(θ)cot2θ2(sin225+cos225)+2sin230tan232tan2583(sec233cot257)\dfrac{{{\operatorname{cosec}}^{2}}\left( \theta \right)-{{\cot }^{2}}\theta }{2\left( {{\sin }^{2}}{{25}^{{}^\circ }}+{{\cos }^{2}}{{25}^{{}^\circ }} \right)}+\dfrac{2{{\sin }^{2}}{{30}^{{}^\circ }}{{\tan }^{2}}{{32}^{{}^\circ }}{{\tan }^{2}}{{58}^{{}^\circ }}}{3\left( {{\sec }^{2}}{{33}^{{}^\circ }}-{{\cot }^{2}}{{57}^{{}^\circ }} \right)}.
Now, we know that cot2θ+1=cosec2θ{{\cot }^{2}}\theta +1={{\operatorname{cosec}}^{2}}\theta and sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. So, we can write cosec2θcot2θ=1{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta =1, therefore we get 12(1)+2sin230tan232tan2583(sec233cot257)\dfrac{1}{2\left( 1 \right)}+\dfrac{2{{\sin }^{2}}{{30}^{{}^\circ }}{{\tan }^{2}}{{32}^{{}^\circ }}{{\tan }^{2}}{{58}^{{}^\circ }}}{3\left( {{\sec }^{2}}{{33}^{{}^\circ }}-{{\cot }^{2}}{{57}^{{}^\circ }} \right)}. Now, we have the value of sin30=12\sin {{30}^{{}^\circ }}=\dfrac{1}{2}, we put the value in the equation as 12+2(12)2tan232tan2583(sec233cot257)\dfrac{1}{2}+\dfrac{2{{\left( \dfrac{1}{2} \right)}^{2}}{{\tan }^{2}}{{32}^{{}^\circ }}{{\tan }^{2}}{{58}^{{}^\circ }}}{3\left( {{\sec }^{2}}{{33}^{{}^\circ }}-{{\cot }^{2}}{{57}^{{}^\circ }} \right)} .
We know that tan(90θ)=cotθ\tan \left( 90-\theta \right)=\cot \theta and cot(90θ)=tanθ\cot \left( 90-\theta \right)=\tan \theta . Therefore, we can use these formulas in the second term as follow cot257=cot2(9033)=tan233co{{t}^{2}}{{57}^{{}^\circ }}={{\cot }^{2}}\left( {{90}^{{}^\circ }}-{{33}^{{}^\circ }} \right)={{\tan }^{2}}{{33}^{{}^\circ }} and tan258=tan2(9032)=cot232{{\tan }^{2}}{{58}^{{}^\circ }}={{\tan }^{2}}\left( {{90}^{{}^\circ }}-{{32}^{{}^\circ }} \right)={{\cot }^{2}}{{32}^{{}^\circ }}. Putting these values in the equation 12+2(12)2tan232tan2583(sec233cot257)\dfrac{1}{2}+\dfrac{2{{\left( \dfrac{1}{2} \right)}^{2}}{{\tan }^{2}}{{32}^{{}^\circ }}{{\tan }^{2}}{{58}^{{}^\circ }}}{3\left( {{\sec }^{2}}{{33}^{{}^\circ }}-{{\cot }^{2}}{{57}^{{}^\circ }} \right)} we get equation modified as 12+2(14)tan232cot2323(sec233tan233)\dfrac{1}{2}+\dfrac{2\left( \dfrac{1}{4} \right){{\tan }^{2}}{{32}^{{}^\circ }}{{\cot }^{2}}{{32}^{{}^\circ }}}{3\left( {{\sec }^{2}}{{33}^{{}^\circ }}-{{\tan }^{2}}{{33}^{{}^\circ }} \right)}.
Now we will use the formulas tanθcotθ=1\tan \theta \cot \theta =1 and tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta or sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 we get 12+2(14)(1)3(1)=12+12×3\dfrac{1}{2}+\dfrac{2\left( \dfrac{1}{4} \right)\left( 1 \right)}{3\left( 1 \right)}=\dfrac{1}{2}+\dfrac{1}{2\times 3}, finally solving this equation further we get
= 12+16\dfrac{1}{2}+\dfrac{1}{6}
= 3+16\dfrac{3+1}{6}
= 46=23\dfrac{4}{6}=\dfrac{2}{3}.
Therefore the given expression has the value of 23\dfrac{2}{3} obtained by using basic trigonometry formulas.

Note: Student may take the value of cosec2θcot2θ=1{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta =-1 in hurry but this is a wrong and the correct value is cosec2θcot2θ=1{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta =1. Usually this error arises because students are in a hurry and make the wrong transpose of trigonometry identities from LHS to RHS. Therefore it is necessary to memorize such trigonometry identities ,formulas,trigonometric conversions and trigonometric standard angles to solve these types of questions.