Solveeit Logo

Question

Question: Find the value of the following expression: \(\sin 690{}^\circ \cos 930{}^\circ +\tan \left( -765{...

Find the value of the following expression:
sin690cos930+tan(765)csc(1170)\sin 690{}^\circ \cos 930{}^\circ +\tan \left( -765{}^\circ \right)\csc \left( -1170{}^\circ \right)

Explanation

Solution

Hint: Convert the angles into radians by multiplying the degree measure of angle with π180\dfrac{\pi }{180}. Use the rules of conversion of T(nπ2±x)T(x),nZT\left( n\dfrac{\pi }{2}\pm x \right)\to T'\left( x \right),n\in \mathbb{Z}, where T and T’ are trigonometric ratios. Use the values of sine cosine tangent cotangent secant and cosecant at angles 0,π6,π4,π3,π20,\dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{3},\dfrac{\pi }{2} and hence find the value of the given expression.

Complete step-by-step answer:

Converting angles in degrees to angles in radians:
We have
[a] 690=690180×π=23π6690{}^\circ =\dfrac{690}{180}\times \pi =\dfrac{23\pi }{6} radians
[b] 930=930180π=316π930{}^\circ =\dfrac{930}{180}\pi =\dfrac{31}{6}\pi radians
[c] 765=765π180=17π4765{}^\circ =\dfrac{765\pi }{180}=\dfrac{17\pi }{4}
[d] 1170=1170π180=13π21170{}^\circ =\dfrac{1170\pi }{180}=\dfrac{13\pi }{2}
Hence, we have
S=sin690cos930+tan(765)csc(1170)=sin23π6cos31π6+tan(17π4)csc(13π2)S=\sin 690{}^\circ \cos 930{}^\circ +\tan \left( -765{}^\circ \right)\csc \left( -1170{}^\circ \right)=\sin \dfrac{23\pi }{6}\cos \dfrac{31\pi }{6}+\tan \left( -\dfrac{17\pi }{4} \right)\csc \left( \dfrac{-13\pi }{2} \right)
We know that tan(x)=tanx\tan \left( -x \right)=-\tan x and csc(x)=cscx\csc \left( -x \right)=-\csc x
Hence, we have
S=sin23π6cos31π6+tan17π4csc13π2S=\sin \dfrac{23\pi }{6}\cos \dfrac{31\pi }{6}+\tan \dfrac{17\pi }{4}\csc \dfrac{13\pi }{2}
Hence, we have
S=sin(4ππ6)cos(5π+π6)+tan(4π+π4)csc(6π+π2)S=\sin \left( 4\pi -\dfrac{\pi }{6} \right)\cos \left( 5\pi +\dfrac{\pi }{6} \right)+\tan \left( 4\pi +\dfrac{\pi }{4} \right)\csc \left( 6\pi +\dfrac{\pi }{2} \right)
We know that sin(4πx)=sinx,cos(5π+x)=cosx,tan(4π+x)=tanx,csc(6π+x)=cscx\sin \left( 4\pi -x \right)=-\sin x,\cos \left( 5\pi +x \right)=-\cos x,\tan \left( 4\pi +x \right)=\tan x,\csc \left( 6\pi +x \right)=\csc x
Hence, we have
S=sinπ6cosπ6+tanπ4cscπ2S=\sin \dfrac{\pi }{6}\cos \dfrac{\pi }{6}+\tan \dfrac{\pi }{4}\csc \dfrac{\pi }{2}
We have the following table for the trigonometric ratios of 0,π6,π4,π3,π20,\dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{3},\dfrac{\pi }{2}

From the table, we have
sinπ6=12,cosπ6=32,tanπ4=1\sin \dfrac{\pi }{6}=\dfrac{1}{2},\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2},\tan \dfrac{\pi }{4}=1 and cscπ2=1\csc \dfrac{\pi }{2}=1
Hence, we have
S=12×32+1×1=1+34S=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+1\times 1=1+\dfrac{\sqrt{3}}{4}

Note: Rule for converting T(nπ2±x)T\left( n\dfrac{\pi }{2}\pm x \right) to T(x)T'\left( x \right), where T and T’ are trigonometric ratios.
If n is even the final expression will be of T. If n is odd, the final expression will contain the complement of T.
The complement of sin is cos and vice versa
The complement of tan is cot and vice versa
The complement of cosec is sec and vice versa.
Sign of the final expression is determined by the quadrant in which nπ2±xn\dfrac{\pi }{2}\pm x falls.
Keeping the above points in consideration, we have
sin(4πx)=sin(8π2x)\sin \left( 4\pi -x \right)=\sin \left( 8\dfrac{\pi }{2}-x \right)
Now 8 is even, hence the final expression will be of sinx.
Also, 4πx4\pi -x falls in the fourth quadrant in which sinx is negative
Hence, we have
sin(4πx)=sinx\sin \left( 4\pi -x \right)=-\sin x