Solveeit Logo

Question

Question: Find the value of the following: \(\dfrac{d\left( \tan \left( \dfrac{1}{x} \right) \right)}{dx}\) ...

Find the value of the following: d(tan(1x))dx\dfrac{d\left( \tan \left( \dfrac{1}{x} \right) \right)}{dx}
(a) 1x2sec21x-\dfrac{1}{{{x}^{2}}}{{\sec }^{2}}\dfrac{1}{x}
(b) 1x2sin21x-\dfrac{1}{{{x}^{2}}}{{\sin }^{2}}\dfrac{1}{x}
(c) 1x2cos21x-\dfrac{1}{{{x}^{2}}}{{\cos }^{2}}\dfrac{1}{x}
(d) 1x2tan21x-\dfrac{1}{{{x}^{2}}}{{\tan }^{2}}\dfrac{1}{x}

Explanation

Solution

Firstly, we need to substitute 1x=t\dfrac{1}{x}=t so that the given expression will become d(tant)dx\dfrac{d\left( \tan t \right)}{dx}. Then, using the chain rule of the differentiation, we can write the expression as d(tant)dtdtdx\dfrac{d\left( \tan t \right)}{dt}\dfrac{dt}{dx}. The differentiation of the function tanθ\tan \theta is equal to sec2θ{{\sec }^{2}}\theta , so that it will become sec2tdtdx{{\sec }^{2}}t\dfrac{dt}{dx}. Then on back substituting t=1xt=\dfrac{1}{x} the expression will become sec21xd(1x)dx{{\sec }^{2}}\dfrac{1}{x}\dfrac{d\left( \dfrac{1}{x} \right)}{dx} which can be simplified by using the differentiation of the function xn{{x}^{n}} which is equal to nxn1n{{x}^{n-1}}.

Complete step-by-step answer:
Let us consider the expression given in the above question as
E=d(tan(1x))dx\Rightarrow E=\dfrac{d\left( \tan \left( \dfrac{1}{x} \right) \right)}{dx}
Let us put 1x=t\dfrac{1}{x}=t so that we can write the above expression as
E=d(tant)dx\Rightarrow E=\dfrac{d\left( \tan t \right)}{dx}
Now, using the chain rule of the differentiation we can write the above expression as
E=d(tant)dtdtdx\Rightarrow E=\dfrac{d\left( \tan t \right)}{dt}\dfrac{dt}{dx}
Now, we know that the differentiation of the function tanθ\tan \theta is equal to sec2θ{{\sec }^{2}}\theta . Therefore, we can put d(tant)dt=sec2t\dfrac{d\left( \tan t \right)}{dt}={{\sec }^{2}}t in the above expression as
E=sec2tdtdx\Rightarrow E={{\sec }^{2}}t\dfrac{dt}{dx}
Now, substituting t=1xt=\dfrac{1}{x} back into the above equation, we can write
E=sec2(1x)d(1x)dx\Rightarrow E={{\sec }^{2}}\left( \dfrac{1}{x} \right)\dfrac{d\left( \dfrac{1}{x} \right)}{dx}
Writing 1x=x1\dfrac{1}{x}={{x}^{-1}} in the above expression we get
E=sec2(1x)d(x1)dx\Rightarrow E={{\sec }^{2}}\left( \dfrac{1}{x} \right)\dfrac{d\left( {{x}^{-1}} \right)}{dx}
Now, we know that the differentiation of the function xn{{x}^{n}} is equal to nxn1n{{x}^{n-1}}. Therefore, for n=1n=-1, the differentiation of the function x1{{x}^{-1}} will be equal to x2-{{x}^{-2}} so that the above expression becomes
E=sec2(1x)(x2)\Rightarrow E={{\sec }^{2}}\left( \dfrac{1}{x} \right)\left( -{{x}^{-2}} \right)
Now, using the negative exponent rule we can write the above expression as

& \Rightarrow E={{\sec }^{2}}\left( \dfrac{1}{x} \right)\left( \dfrac{-1}{{{x}^{2}}} \right) \\\ & \Rightarrow E=\dfrac{-1}{{{x}^{2}}}{{\sec }^{2}}\left( \dfrac{1}{x} \right) \\\ \end{aligned}$$ **So, the correct answer is “Option (a)”.** **Note:** We may forget to apply the chain rule of differentiation and write the expression after differentiating as ${{\sec }^{2}}\dfrac{1}{x}$. To avoid this mistake, we must adopt the method of the substitution, as shown in the above solution.