Solveeit Logo

Question

Question: Find the value of the following determinant using column and row operations on it and choose the cor...

Find the value of the following determinant using column and row operations on it and choose the correct alternative111 bccaab b+cc+aa+b \left| \begin{matrix} 1 & 1 & 1 \\\ bc & ca & ab \\\ b+c & c+a & a+b \\\ \end{matrix} \right|.
a)1
b)0
c)(ab)(bc)(ca)\left( a-b \right)\left( b-c \right)\left( c-a \right)
d)(a+b)(b+c)(c+a)\left( a+b \right)\left( b+c \right)\left( c+a \right)

Explanation

Solution

Hint: We will first simplify the given determinant by applying various row and column operations as C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} and then C1C1C3{{C}_{1}}\to {{C}_{1}}-{{C}_{3}} and finally expand the obtained determinant along R1{{R}_{1}} to get the value of the given determinant.

Complete step-by-step answer:
It is given in the question that we have to find the value of determinant 111 bccaab b+cc+aa+b \left| \begin{matrix} 1 & 1 & 1 \\\ bc & ca & ab \\\ b+c & c+a & a+b \\\ \end{matrix} \right|. We will first simplify the given determinant by performing the following operations C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} and then C1C1C3{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}. Now first applying C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}}, we get the determinant modified as 1111 bccabcab b+c(c+a)(b+c)a+b \left| \begin{matrix} 1 & 1-1 & 1 \\\ bc & ca-bc & ab \\\ b+c & \left( c+a \right)-\left( b+c \right) & a+b \\\ \end{matrix} \right|, that is, 101 bcc(ab)ab b+c(ab)a+b \left| \begin{matrix} 1 & 0 & 1 \\\ bc & c\left( a-b \right) & ab \\\ b+c & \left( a-b \right) & a+b \\\ \end{matrix} \right|.
Now, taking (ab)\left( a-b \right) common from C2{{C}_{2}}, we get (ab)101 bccab b+c1a+b \left( a-b \right)\left| \begin{matrix} 1 & 0 & 1 \\\ bc & c & ab \\\ b+c & 1 & a+b \\\ \end{matrix} \right|. Again we apply the column operation as C1C1C3{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}, we get (ab)1101 bcabcab (b+c)(a+b)1a+b \left( a-b \right)\left| \begin{matrix} 1-1 & 0 & 1 \\\ bc-ab & c & ab \\\ \left( b+c \right)-\left( a+b \right) & 1 & a+b \\\ \end{matrix} \right|, further solving and simplifying we get (ab)1101 b(ca)cab (ca)1a+b \left( a-b \right)\left| \begin{matrix} 1-1 & 0 & 1 \\\ b\left( c-a \right) & c & ab \\\ \left( c-a \right) & 1 & a+b \\\ \end{matrix} \right|. Now, taking (ca)\left( c-a \right) common from C1{{C}_{1}} we get (ab)(ca)001 bcab 11a+b \left( a-b \right)\left( c-a \right)\left| \begin{matrix} 0 & 0 & 1 \\\ b & c & ab \\\ 1 & 1 & a+b \\\ \end{matrix} \right|.
Now expanding the determinant along row R1{{R}_{1}} we get, (ab)(ca)[1×(bc)]\left( a-b \right)\left( c-a \right)\left[ 1\times \left( b-c \right) \right] or simplified as (ab)(bc)(ca)\left( a-b \right)\left( b-c \right)\left( c-a \right). Therefore we expanded the determinant to get an expression (ab)(bc)(ca)\left( a-b \right)\left( b-c \right)\left( c-a \right), therefore option c) is the correct answer.

Note: Usually students directly expand the given determinant directly which is not the correct method to find the value of any determinant. Before expanding any determinant we have to simplify it and try to make our expression as simple as it is possible. Also, while taking common in any row and column we have to keep our eyes on the sign of each term individually. In general, always try to make two zeroes in any of the row or the column using row and column operations, it makes it easy to expand the determinant along the row or column containing maximum number of zeroes.