Question
Question: Find the value of the expression \(\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)\) is equ...
Find the value of the expression tanA+tan(60+A)−tan(60−A) is equal to
a) 3 tan 3A
b) tan 3A
c) cot 3A
d) sin 3A
Solution
Hint: Use trigonometric identities to simplify the relation. Convert given tan functions to sin and cos functions. Take any two tan functions to solve the given expression easily.
Trigonometric expression given here is;
tanA+tan(60+A)−tan(60−A)
Let, we represent the above relation by ‘M’, hence;
M=tanA+tan(60+A)−tan(60−A)……………….. (1)
Let us solve last two terms by converting tan to sin and cos using relation;
tanθ=cosθsinθ …………………. (2)
Hence, equation (1), can be written as;
M=tanA+cos(60+A)sin(60+A)−cos(60−A)sin(60−A)
Taking L.C.M in last two fractions, we get
M=tanA+cos(60+A).cos(60−A)(sin(60+A).cos(60−A)−sin(60−A).cos(60+A))
Now, we know the trigonometric identities as;
sin(A−B)=sinAcosB−cosAsinB or vice – versa can also be used.
And, we also know that
cos(A−B)cos(A+B)=cos2B−sin2A
Using the above trigonometric identities in for simplifying the relation ‘M’ we get;
M=tanA+cos2A−sin260sin(60+A)−(60−A)M=tanA+cos2A−sin260∘sin2A
Now, we know the value of sin 60∘i.e. 23. Putting value of sin260, in above equation, we get;
M=tanA+cos2A−43sin2AorM=tanA+4cos2A−34sin2A
Now, we can use trigonometric identity sin2A=2sinAcosA and tanθ=cosθsinθ to simplify the above relation more, we get;
M=cosAsinA+4cos2A−38sinAcosA
Now, taking ‘sinA’ common from both the terms and L.C.M as well, we get;
M=sinA(cosA1+4cos2A−38cosA)orM=sinA(cosA(4cos2A−3)4cos2A−3+8cos2A)M=sinA(cosA(4cos2A−3)12cos2A−3)
Now, using the relation sin2θ+cos2θ=1 or cos2θ=1−sin2θ to replace cos2A by 1−sin2A, we get;
M=sinA(cosA(4cos2A−3)12(1−sin2A)−3)M=sinA(cosA(4cos2A−3)9−12sin2A)
Taking ‘3’ common from numerator, we get;
M=3sinA(cosA(4cos2A−3)3−4sin2A)orM=3sinA(4cos3A−3cosA3sinA−4sin3A)
AS, we know trigonometric identities for converting 3θ to θ with sin and cos terms as follows;
sin3A=3sinA−4sin3Acos3A=4cos3A−3cosA
Hence, above relation of M can be re-written as;
M=3cos3Asin3A=3tan3A
Hence, the value of tan A + tan (60 + A) – tan (60 – A) is 3 tan 3A.
So, option A is the correct answer.
Note: One can get confused with the formulae of sin 3A and cos 3A as mentioned in the solution.
Another approach for this question would be that we can use trigonometry identities;
tan(A+B)=1−tanAtanBtanA+tanBandtan(A−B)=1+tanAtanBtanA−tanB
to simplify tan (60 + A) and tan (60 – A). Then simplify the results found to get the answer. Applying trigonometric identities always makes solutions flexible and shorter which is the key point of the solution.