Solveeit Logo

Question

Question: Find the value of the expression \(\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)\) is equ...

Find the value of the expression tanA+tan(60+A)tan(60A)\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right) is equal to
a) 3 tan 3A
b) tan 3A
c) cot 3A
d) sin 3A

Explanation

Solution

Hint: Use trigonometric identities to simplify the relation. Convert given tan functions to sin and cos functions. Take any two tan functions to solve the given expression easily.

Trigonometric expression given here is;
tanA+tan(60+A)tan(60A)\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)
Let, we represent the above relation by ‘M’, hence;
M=tanA+tan(60+A)tan(60A)M=\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)……………….. (1)
Let us solve last two terms by converting tan to sin and cos using relation;
tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } …………………. (2)
Hence, equation (1), can be written as;
M=tanA+sin(60+A)cos(60+A)sin(60A)cos(60A)M=\tan A+\dfrac{\sin \left( 60+A \right)}{\cos \left( 60+A \right)}-\dfrac{\sin \left( 60-A \right)}{\cos \left( 60-A \right)}
Taking L.C.M in last two fractions, we get
M=tanA+(sin(60+A).cos(60A)sin(60A).cos(60+A))cos(60+A).cos(60A)M=\tan A+\dfrac{\left( \sin \left( 60+A \right).\cos \left( 60-A \right)-\sin \left( 60-A \right).\cos \left( 60+A \right) \right)}{\cos \left( 60+A \right).\cos \left( 60-A \right)}
Now, we know the trigonometric identities as;
sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B or vice – versa can also be used.
And, we also know that
cos(AB)cos(A+B)=cos2Bsin2A\cos \left( A-B \right)\cos \left( A+B \right)={{\cos }^{2}}B-{{\sin }^{2}}A
Using the above trigonometric identities in for simplifying the relation ‘M’ we get;
M=tanA+sin(60+A)(60A)cos2Asin260 M=tanA+sin2Acos2Asin260 \begin{aligned} & M=\tan A+\dfrac{\sin {\left( 60+A \right)-\left( 60-A \right)}}{{{\cos }^{2}}A-{{\sin }^{2}}{60}} \\\ & M=\tan A+\dfrac{\sin 2A}{{{\cos }^{2}}A-{{\sin }^{2}}60{}^\circ } \\\ \end{aligned}
Now, we know the value of sin 60sin\text{ }60{}^\circ i.e. 32\dfrac{\sqrt{3}}{2}. Putting value of sin260{{\sin }^{2}}60, in above equation, we get;
M=tanA+sin2Acos2A34 or M=tanA+4sin2A4cos2A3 \begin{aligned} & M=\tan A+\dfrac{\sin 2A}{{{\cos }^{2}}A-\dfrac{3}{4}} \\\ & or \\\ & M=\tan A+\dfrac{4\sin 2A}{4{{\cos }^{2}}A-3} \\\ \end{aligned}
Now, we can use trigonometric identity sin2A=2sinAcosA and tanθ=sinθcosθ\sin 2A=2\sin A\cos A\text{ and }\tan \theta =\dfrac{\sin \theta }{\cos \theta } to simplify the above relation more, we get;
M=sinAcosA+8sinAcosA4cos2A3M=\dfrac{\sin A}{\cos A}+\dfrac{8\sin A\cos A}{4{{\cos }^{2}}A-3}
Now, taking ‘sinA’ common from both the terms and L.C.M as well, we get;
M=sinA(1cosA+8cosA4cos2A3) or M=sinA(4cos2A3+8cos2AcosA(4cos2A3)) M=sinA(12cos2A3cosA(4cos2A3)) \begin{aligned} & M=\sin A\left( \dfrac{1}{\cos A}+\dfrac{8\cos A}{4{{\cos }^{2}}A-3} \right) \\\ & or \\\ & M=\sin A\left( \dfrac{4{{\cos }^{2}}A-3+8{{\cos }^{2}}A}{\cos A\left( 4{{\cos }^{2}}A-3 \right)} \right) \\\ & M=\sin A\left( \dfrac{12{{\cos }^{2}}A-3}{\cos A\left( 4{{\cos }^{2}}A-3 \right)} \right) \\\ \end{aligned}
Now, using the relation sin2θ+cos2θ=1 or cos2θ=1sin2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\ or\ {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta to replace cos2A  by 1sin2A{{\cos }^{2}}A\ \text{ by}\ 1-{{\sin }^{2}}A, we get;
M=sinA(12(1sin2A)3cosA(4cos2A3)) M=sinA(912sin2AcosA(4cos2A3)) \begin{aligned} & M=\sin A\left( \dfrac{12\left( 1-{{\sin }^{2}}A \right)-3}{\cos A\left( 4{{\cos }^{2}}A-3 \right)} \right) \\\ & M=\sin A\left( \dfrac{9-12{{\sin }^{2}}A}{\cos A\left( 4{{\cos }^{2}}A-3 \right)} \right) \\\ \end{aligned}
Taking ‘3’ common from numerator, we get;
M=3sinA(34sin2AcosA(4cos2A3)) or M=3sinA(3sinA4sin3A4cos3A3cosA) \begin{aligned} & M=3\sin A\left( \dfrac{3-4{{\sin }^{2}}A}{\cos A\left( 4{{\cos }^{2}}A-3 \right)} \right) \\\ & or \\\ & M=3\sin A\left( \dfrac{3\sin A-4{{\sin }^{3}}A}{4{{\cos }^{3}}A-3\cos A} \right) \\\ \end{aligned}
AS, we know trigonometric identities for converting 3θ to θ3\theta \ to\ \theta with sin and cos terms as follows;
sin3A=3sinA4sin3A cos3A=4cos3A3cosA \begin{aligned} & \sin 3A=3\sin A-4{{\sin }^{3}}A \\\ & \cos 3A=4{{\cos }^{3}}A-3\cos A \\\ \end{aligned}
Hence, above relation of M can be re-written as;
M=3sin3Acos3A=3tan3AM=3\dfrac{\sin 3A}{\cos 3A}=3\tan 3A
Hence, the value of tan A + tan (60 + A) – tan (60 – A) is 3 tan 3A.
So, option A is the correct answer.

Note: One can get confused with the formulae of sin 3A and cos 3A as mentioned in the solution.
Another approach for this question would be that we can use trigonometry identities;
tan(A+B)=tanA+tanB1tanAtanB and tan(AB)=tanAtanB1+tanAtanB \begin{aligned} & \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\\ & and \\\ & \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\\ \end{aligned}
to simplify tan (60 + A) and tan (60 – A). Then simplify the results found to get the answer. Applying trigonometric identities always makes solutions flexible and shorter which is the key point of the solution.