Solveeit Logo

Question

Question: Find the value of the expression \(\tan 6{}^\circ \tan 42{}^\circ \tan 66{}^\circ \tan 78{}^\circ ...

Find the value of the expression
tan6tan42tan66tan78\tan 6{}^\circ \tan 42{}^\circ \tan 66{}^\circ \tan 78{}^\circ
[a] 0
[b] 12\dfrac{1}{2}
[c] 1
[d] -1

Explanation

Solution

Hint: Observe that 66=18011466{}^\circ =180{}^\circ -114{}^\circ and 6=60546{}^\circ =60{}^\circ -54{}^\circ 114=60+54114{}^\circ =60{}^\circ +54{}^\circ . Also, observe that 42=601842{}^\circ =60{}^\circ -18{}^\circ and 78=60+1878{}^\circ =60{}^\circ +18{}^\circ . Hence prove that the given product is equal to tan(6054)tan(60+54)tan(6018)tan(60+18)-\tan \left( 60{}^\circ -54{}^\circ \right)\tan \left( 60{}^\circ +54{}^\circ \right)\tan \left( 60{}^\circ -18{}^\circ \right)\tan \left( 60{}^\circ +18{}^\circ \right). Use the fact that tan(60A)tanAtan(60+A)=tan3A\tan \left( 60{}^\circ -A \right)\tan A\tan \left( 60{}^\circ +A \right)=\tan 3A and hence find the value of the given expression.

Complete step-by-step answer:
Let P=tan6tan42tan66tan78P=\tan 6{}^\circ \tan 42{}^\circ \tan 66{}^\circ \tan 78{}^\circ
We know that tan(x)=tan(180x)\tan \left( x \right)=-\tan \left( 180{}^\circ -x \right)
Hence, we have
P=tan6tan42tan(18066)tan78P=-\tan 6{}^\circ \tan 42{}^\circ \tan \left( 180{}^\circ -66{}^\circ \right)\tan 78{}^\circ
Hence, we have
P=tan6tan42tan(114)tan78P=-\tan 6{}^\circ \tan 42{}^\circ \tan \left( 114{}^\circ \right)\tan 78{}^\circ
We know that 66=18011466{}^\circ =180{}^\circ -114{}^\circ and 6=60546{}^\circ =60{}^\circ -54{}^\circ 114=60+54114{}^\circ =60{}^\circ +54{}^\circ . Also, observe that 42=601842{}^\circ =60{}^\circ -18{}^\circ and 78=60+1878{}^\circ =60{}^\circ +18{}^\circ .
Hence, we have
P=tan(6054)tan(6018)tan(60+54)tan(60+18)P=-\tan \left( 60{}^\circ -54{}^\circ \right)\tan \left( 60{}^\circ -18{}^\circ \right)\tan \left( 60{}^\circ +54{}^\circ \right)\tan \left( 60{}^\circ +18{}^\circ \right)
Rewriting, we get
P=tan(6054)tan(60+54)tan(6018)tan(60+18)P=-\tan \left( 60{}^\circ -54{}^\circ \right)\tan \left( 60{}^\circ +54{}^\circ \right)\tan \left( 60{}^\circ -18{}^\circ \right)\tan \left( 60{}^\circ +18{}^\circ \right)
Now, we know that
tan(60A)tanAtan(60+A)=tan3A\tan \left( 60{}^\circ -A \right)\tan A\tan \left( 60{}^\circ +A \right)=\tan 3A
Dividing both sides of the equation by tanA, we get
tan(60A)tan(60+A)=tan3AtanA\tan \left( 60{}^\circ -A \right)\tan \left( 60{}^\circ +A \right)=\dfrac{\tan 3A}{\tan A}
Hence, we have
tan(6054)tan(60+54)=tan(3×54)tan54=tan162tan54\tan \left( 60{}^\circ -54{}^\circ \right)\tan \left( 60{}^\circ +54{}^\circ \right)=\dfrac{\tan \left( 3\times 54{}^\circ \right)}{\tan 54{}^\circ }=\dfrac{\tan 162{}^\circ }{\tan 54{}^\circ }
We know that
tan(x)=tan(180x)\tan \left( x \right)=-\tan \left( 180{}^\circ -x \right)
Hence, we have
tan(6054)tan(60+54)=tan(180162)tan54=tan18tan54\tan \left( 60{}^\circ -54{}^\circ \right)\tan \left( 60{}^\circ +54{}^\circ \right)=-\dfrac{\tan \left( 180{}^\circ -162{}^\circ \right)}{\tan 54{}^\circ }=-\dfrac{\tan 18{}^\circ }{\tan 54{}^\circ }
Also, we have
tan(6018)tan(60+18)=tan(3×18)tan18=tan54tan18\tan \left( 60{}^\circ -18{}^\circ \right)\tan \left( 60{}^\circ +18{}^\circ \right)=\dfrac{\tan \left( 3\times 18{}^\circ \right)}{\tan 18{}^\circ }=\dfrac{\tan 54{}^\circ }{\tan 18{}^\circ }
Hence, we have
P=tan(6054)tan(60+54)tan(6018)tan(60+18)=(tan18tan54)×tan54tan18P=-\tan \left( 60{}^\circ -54{}^\circ \right)\tan \left( 60{}^\circ +54{}^\circ \right)\tan \left( 60{}^\circ -18{}^\circ \right)\tan \left( 60{}^\circ +18{}^\circ \right)=-\left( -\dfrac{\tan 18{}^\circ }{\tan 54{}^\circ } \right)\times \dfrac{\tan 54{}^\circ }{\tan 18{}^\circ }
Hence, we have
P = 1.
Hence option [c] is correct.

Note: [1] In the above question, we have used the property that tan(60A)tanAtan(60+A)=tan3AtanA\tan \left( 60{}^\circ -A \right)\tan A\tan \left( 60{}^\circ +A \right)=\dfrac{\tan 3A}{\tan A}
This can be proved as follows:
We know that
tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}
Replace A by 60 and B by A, we get
tan(60A)=tan60tanA1+tan60tanA=3tanA1+3tanA (i)\tan \left( 60{}^\circ -A \right)=\dfrac{\tan 60{}^\circ -\tan A}{1+\tan 60{}^\circ \tan A}=\dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}\text{ }\left( i \right)
We know that tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
Replace A by 60 and B by A, we get
tan(60+A)=tan60+tanA1tan60tanA=3+tanA13tanA (ii)\tan \left( 60{}^\circ +A \right)=\dfrac{\tan 60{}^\circ +\tan A}{1-\tan 60{}^\circ \tan A}=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}\text{ }\left( ii \right)
Multiplying equation (i) and equation (ii), we get
tan(60A)tan(60+A)=3+tanA13tanA×3tanA1+3tanA\tan \left( 60{}^\circ -A \right)\tan \left( 60{}^\circ +A \right)=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}\times \dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}
We know that (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}
Using the above identity, we get
tan(60A)tan(60+A)=3tan2A13tanA\tan \left( 60{}^\circ -A \right)\tan \left( 60{}^\circ +A \right)=\dfrac{3-{{\tan }^{2}}A}{1-3\tan A}
Multiplying and dividing by tanA on RHS, we get
tan(60A)tan(60+A)=1tanA3tanAtan3A13tan2A\tan \left( 60{}^\circ -A \right)\tan \left( 60{}^\circ +A \right)=\dfrac{1}{\tan A}\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}
We know that tan3A=3tanAtan3A13tan2A\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A}
Hence, we have
tan(60A)tan(60+A)=tan3AtanA\tan \left( 60{}^\circ -A \right)\tan \left( 60{}^\circ +A \right)=\dfrac{\tan 3A}{\tan A}, which proves the result
[2] Rule for converting T(nπ2±x)T\left( n\dfrac{\pi }{2}\pm x \right) to T(x)T\left( x \right), where T is any trigonometric ratio.
If n is even the final expression will be of T. If n is odd, the final expression will contain the complement of T.
The complement of sin is cos and vice versa
The complement of tan is cot and vice versa
The complement of cosec is sec and vice versa.
Sign of the final expression is determined by the quadrant in which nπ2±xn\dfrac{\pi }{2}\pm x falls.
Keeping the above points in consideration, we have
tan(πx)=tan(2π2x)\tan \left( \pi -x \right)=\tan \left( 2\dfrac{\pi }{2}-x \right)
Now 2 is even, hence the final expression will be of tan x.
Also, πx\pi -x falls in the second quadrant in which tanx is negative
Hence, we have
tan(πx)=tanx\tan \left( \pi -x \right)=-\tan x