Solveeit Logo

Question

Question: Find the value of the expression \[\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89\]....

Find the value of the expression tan1tan2tan3tan89\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89.

Explanation

Solution

Hint : We will try to convert tan to its reciprocal value that is cot so that it will easily cancel out with each other and we will get a simplest value that will help us to get the final answer easily. After doing this we will get a finite value left to us which will be the final answer to this question.
tan(90x)=cotx\tan (90 - x) = \cot x where, xx is angle in degrees.
tanx×cotx=1\tan x \times \cot x = 1

Complete step-by-step answer :
The given expression is:
tan1tan2tan3tan89\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89
=tan1tan2tan3tan87tan88tan89= \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 87 \cdot \tan 88 \cdot \tan 89
=tan1tan2tan3tan(903)tan(902)tan(901)= \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan (90 - 3) \cdot \tan (90 - 2) \cdot \tan (90 - 1)
=tan1tan2tan3cot3cot2cot1= \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \cot 3 \cdot \cot 2 \cdot \cot 1 [ tan(90x)=cotx\because \tan (90 - x) = \cot x ]
Rearranging the above expression we get:
=tan1cot1tan2cot2tan3cot3tan45= \tan 1 \cdot \cot 1 \cdot \tan 2 \cdot \cot 2 \cdot \tan 3 \cdot \cot 3 \ldots \cdot \tan 45
=(tan1cot1)(tan2cot2)(tan3cot3)(tan45)= (\tan 1 \cdot \cot 1) \cdot (\tan 2 \cdot \cot 2) \cdot (\tan 3 \cdot \cot 3) \ldots \cdot (\tan 45)
=1(tan45)=tan45= 1 \cdot (\tan 45) = \tan 45 [ tanx×cotx=1\because \tan x \times \cot x = 1 ]
=1= 1 [ tan45=1\because \tan 45 = 1 ]
Therefor the value of tan1tan2tan3tan89\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89 is 11

Note : Notice carefully that we are converting tan angles to cot angles up to a certain terms so that they cancel with each other. We should remember all the trigonometry values and functions so that easily we can get these answers.