Solveeit Logo

Question

Question: Find the value of the expression \({{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6{{\log }_{6}}7{{\log }_...

Find the value of the expression log34log45log56log67log78log89{{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6{{\log }_{6}}7{{\log }_{7}}8{{\log }_{8}}9

Explanation

Solution

Hint: Use the base changing formula of the logarithm, i.e. logba=logcalogcb{{\log }_{b}}a=\dfrac{{{\log }_{c}}a}{{{\log }_{c}}b}. Hence convert the base of all the logarithms involved to a common base (say 10) and hence find the value of the given expression.

Complete step-by-step answer:
Using base changing formula to convert the base of log34{{\log }_{3}}4 to e, we get
log34=ln4ln3 (i){{\log }_{3}}4=\dfrac{\ln 4}{\ln 3}\text{ }\left( i \right)
Using base changing formula to convert the base of log45{{\log }_{4}}5 to e, we get
log45=ln5ln4 (ii){{\log }_{4}}5=\dfrac{\ln 5}{\ln 4}\text{ }\left( ii \right)
Using base changing formula to convert the base of log56{{\log }_{5}}6 to e, we get
log56=ln6ln5 (iii){{\log }_{5}}6=\dfrac{\ln 6}{\ln 5}\text{ }\left( iii \right)
Using base changing formula to convert the base of log67{{\log }_{6}}7 to e, we get
log67=ln7ln6 (iv){{\log }_{6}}7=\dfrac{\ln 7}{\ln 6}\text{ }\left( iv \right)
Using base changing formula to convert the base of log78{{\log }_{7}}8 to e, we get
log78=ln8ln7 (v){{\log }_{7}}8=\dfrac{\ln 8}{\ln 7}\text{ }\left( v \right)
Using base changing formula to convert the base of log89{{\log }_{8}}9 to e, we get
log89=ln9ln8 (vi){{\log }_{8}}9=\dfrac{\ln 9}{\ln 8}\text{ }\left( vi \right)
Multiplying equation(i), equation (ii), equation (iii), equation (iv), equation (v) and equation (vi), we get
log34log45log56log67log78log89=ln4ln3×ln5ln4×ln6ln5×ln7ln6×ln8ln7×ln9ln8{{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6{{\log }_{6}}7{{\log }_{7}}8{{\log }_{8}}9=\dfrac{\ln 4}{\ln 3}\times \dfrac{\ln 5}{\ln 4}\times \dfrac{\ln 6}{\ln 5}\times \dfrac{\ln 7}{\ln 6}\times \dfrac{\ln 8}{\ln 7}\times \dfrac{\ln 9}{\ln 8}
Simplifying, we get
log34log45log56log67log78log89=ln9ln3{{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6{{\log }_{6}}7{{\log }_{7}}8{{\log }_{8}}9=\dfrac{\ln 9}{\ln 3}
We know that lnmn=nlnm\ln {{m}^{n}}=n\ln m
Hence, we have
log34log45log56log67log78log89=ln9ln3=ln32ln3=2ln3ln3=2{{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6{{\log }_{6}}7{{\log }_{7}}8{{\log }_{8}}9=\dfrac{\ln 9}{\ln 3}=\dfrac{\ln {{3}^{2}}}{\ln 3}=\dfrac{2\ln 3}{\ln 3}=2
Hence the value of the given expression is 2.

Note: Alternative solution:
We know from base changing formula
logac=logbclogba{{\log }_{a}}c=\dfrac{{{\log }_{b}}c}{{{\log }_{b}}a}
Multiplying both sides by logba{{\log }_{b}}a, we get
logbc=logbalogac{{\log }_{b}}c={{\log }_{b}}a{{\log }_{a}}c
Hence, we have
log34log45=log35{{\log }_{3}}4{{\log }_{4}}5={{\log }_{3}}5
Multiplying both sides by log56{{\log }_{5}}6, we get
log34log45log56=log35log56=log36{{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6={{\log }_{3}}5{{\log }_{5}}6={{\log }_{3}}6
Continuing in this way, we get
log34log45log56log67log78log89=log39=log332{{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6{{\log }_{6}}7{{\log }_{7}}8{{\log }_{8}}9={{\log }_{3}}9={{\log }_{3}}{{3}^{2}}
We know that logaan=n{{\log }_{a}}{{a}^{n}}=n
Hence, we get
log34log45log56log67log78log89=2{{\log }_{3}}4{{\log }_{4}}5{{\log }_{5}}6{{\log }_{6}}7{{\log }_{7}}8{{\log }_{8}}9=2, which is the same as obtained above.