Solveeit Logo

Question

Question: Find the value of the expression \(\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos ...

Find the value of the expression sin215+sin275cos236+cos254\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }

Explanation

Solution

Hint: Use the fact that cos(90x)=sinx,sin(90x)=cosx\cos \left( 90{}^\circ -x \right)=\sin x,\sin \left( 90{}^\circ -x \right)=\cos x and cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1. Observe that 75=901575{}^\circ =90{}^\circ -15{}^\circ and 54=903654{}^\circ =90{}^\circ -36{}^\circ . Hence write sin(75)\sin \left( 75{}^\circ \right) as sin(9015)\sin \left( 90{}^\circ -15{}^\circ \right) and cos(54)\cos \left( 54{}^\circ \right) as cos(9036)\cos \left( 90{}^\circ -36{}^\circ \right). Hence use the above formal to simplify the expression.

Complete step-by-step solution -

Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine,
tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
Consider a right-angled triangle ABC, right-angled at A. Let B=15\angle B=15{}^\circ .


Now, we have
A+B+C=180\angle A+\angle B+\angle C=180{}^\circ (angle sum property of a triangle)
Hence we have
90+15+C=180C=7590{}^\circ +15{}^\circ +\angle C=180{}^\circ \Rightarrow \angle C=75{}^\circ
Hence sin215+sin275=sin2B+sin2C{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ ={{\sin }^{2}}B+{{\sin }^{2}}C
Now sinB=ACBC\sin B=\dfrac{AC}{BC} and sinC=ABBC\sin C=\dfrac{AB}{BC}
Hence sin2B+sin2C=AC2BC2+AB2BC2=AC2+AB2BC2{{\sin }^{2}}B+{{\sin }^{2}}C=\dfrac{A{{C}^{2}}}{B{{C}^{2}}}+\dfrac{A{{B}^{2}}}{B{{C}^{2}}}=\dfrac{A{{C}^{2}}+A{{B}^{2}}}{B{{C}^{2}}}
Since ABC is a right-angled triangle, by Pythagoras theorem, we have
AC2+AB2=BC2A{{C}^{2}}+A{{B}^{2}}=B{{C}^{2}}
Hence sin2B+sin2C=1{{\sin }^{2}}B+{{\sin }^{2}}C=1
Again consider a triangle ABC, with B=36\angle B=36{}^\circ
Hence A+B+C=180\angle A+\angle B+\angle C=180{}^\circ
Substituting the value of A\angle A and B\angle B, we get
90+36+C=180C=5490{}^\circ +36{}^\circ +\angle C=180{}^\circ \Rightarrow \angle C=54{}^\circ
Hence cos236+cos254=cos2B+cos2C{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ ={{\cos }^{2}}B+{{\cos }^{2}}C
We have cosB=ABBC\cos B=\dfrac{AB}{BC} and cosC=ACBC\cos C=\dfrac{AC}{BC}
Hence cos2B+cos2C=AB2BC2+AC2BC2=AB2+AC2BC2=1{{\cos }^{2}}B+{{\cos }^{2}}C=\dfrac{A{{B}^{2}}}{B{{C}^{2}}}+\dfrac{A{{C}^{2}}}{B{{C}^{2}}}=\dfrac{A{{B}^{2}}+A{{C}^{2}}}{B{{C}^{2}}}=1
Hence we have
sin215+sin275cos236+cos254=11=1\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{1}{1}=1

Note: Alternatively, we have
sin215+sin275cos236+cos254=sin215+sin2(9015)cos236+cos2(9036)\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}\left( 90{}^\circ -15{}^\circ \right)}{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}\left( 90{}^\circ -36{}^\circ \right)}
We know that cos(90x)=sinx\cos \left( 90{}^\circ -x \right)=\sin x and sin(90x)=cosx\sin \left( 90{}^\circ -x \right)=\cos x
Using the above formulae, we get
sin215+sin275cos236+cos254=sin215+cos215cos236+sin236\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{{{\sin }^{2}}15{}^\circ +{{\cos }^{2}}15{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\sin }^{2}}36{}^\circ }
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. Hence, we have
sin215+sin275cos236+cos254=11=1\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{1}{1}=1