Question
Question: Find the value of the expression \(\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \righ...
Find the value of the expression cos(60∘+x)+cos(60∘−x) is
[a] 2sinx
[b] 2cosx
[c] sinx
[d] cosx
Solution
Hint: Use the identity cos(A+B)=cosAcosB−sinAsinB and cos(A−B)=cosAcosB+sinAsinB. Hence determine the value of cos(60∘−x) and of cos(60∘+x). Add the two expressions to get the value of cos(60∘−x)+cos(60∘+x). Alternatively use the fact that cosA+cosB=2cos(2A+B)cos(2A−B). Hence determine the value of the expression cos(60∘−x)+cos(60∘+x).
Complete step-by-step answer:
We know that cos(A−B)=cosAcosB+sinAsinB.
Put A=60∘ and B=x, we get
cos(60∘−x)=cos60∘cosx+sin(60∘)sinx
We know that cos60∘=21 and sin60∘=23
Hence, we have
cos(60∘−x)=2cosx+23sinx (i)
Also, we know that
cos(A+B)=cosAcosB−sinAsinB
Put A=60∘ and B=x, we get
cos(60∘+x)=cos60∘cosx−sin(60∘)sinx
We know that cos60∘=21 and sin60∘=23
Hence, we have
cos(60∘+x)=2cosx−23sinx (ii)
Adding equation(i) and equation (ii), we get
cos(60∘+x)+cos(60∘−x)=21cosx−23sinx+21cosx+23sinx=cosx
Hence, we have
cos(60∘+x)+cos(60∘−x)=cosx $$$$
Hence option [d] is correct.
Note: Alternative Solution:
We know that
cosA+cosB=2cos(2A+B)cos(2A−B)
Put A = 60+x and B = 60-x, we get
cos(60∘+x)+cos(60∘−x)=2cos(260∘+x+60∘−x)cos(260∘+x−60∘+x)
Hence, we have
cos(60∘+x)+cos(60∘−x)=2cosxcos60∘
We know that cos60∘=21
Hence, we have
cos(60∘+x)+cos(60∘−x)=2×21cosx=cosx, which is the same as obtained above.
Hence option [d] is correct.