Solveeit Logo

Question

Question: Find the value of the expression \(\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \righ...

Find the value of the expression cos(60+x)+cos(60x)\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right) is
[a] 2sinx\sqrt{2}\sin x
[b] 2cosx\sqrt{2}\cos x
[c] sinx\sin x
[d] cosx\cos x

Explanation

Solution

Hint: Use the identity cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B and cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B. Hence determine the value of cos(60x)\cos \left( 60{}^\circ -x \right) and of cos(60+x)\cos \left( 60{}^\circ +x \right). Add the two expressions to get the value of cos(60x)+cos(60+x)\cos \left( 60{}^\circ -x \right)+\cos \left( 60{}^\circ +x \right). Alternatively use the fact that cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right). Hence determine the value of the expression cos(60x)+cos(60+x)\cos \left( 60{}^\circ -x \right)+\cos \left( 60{}^\circ +x \right).

Complete step-by-step answer:
We know that cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B.
Put A=60A=60{}^\circ and B=xB=x, we get
cos(60x)=cos60cosx+sin(60)sinx\cos \left( 60{}^\circ -x \right)=\cos 60{}^\circ \cos x+\sin \left( 60{}^\circ \right)\sin x
We know that cos60=12\cos 60{}^\circ =\dfrac{1}{2} and sin60=32\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}
Hence, we have
cos(60x)=cosx2+32sinx (i)\cos \left( 60{}^\circ -x \right)=\dfrac{\cos x}{2}+\dfrac{\sqrt{3}}{2}\sin x\text{ }\left( i \right)
Also, we know that
cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B
Put A=60A=60{}^\circ and B=xB=x, we get
cos(60+x)=cos60cosxsin(60)sinx\cos \left( 60{}^\circ +x \right)=\cos 60{}^\circ \cos x-\sin \left( 60{}^\circ \right)\sin x
We know that cos60=12\cos 60{}^\circ =\dfrac{1}{2} and sin60=32\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}
Hence, we have
cos(60+x)=cosx232sinx (ii)\cos \left( 60{}^\circ +x \right)=\dfrac{\cos x}{2}-\dfrac{\sqrt{3}}{2}\sin x\text{ }\left( ii \right)
Adding equation(i) and equation (ii), we get
cos(60+x)+cos(60x)=12cosx32sinx+12cosx+32sinx=cosx\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x=\cos x
Hence, we have
cos(60+x)+cos(60x)=cosx\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=\cos x $$$$
Hence option [d] is correct.

Note: Alternative Solution:
We know that
cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)
Put A = 60+x and B = 60-x, we get
cos(60+x)+cos(60x)=2cos(60+x+60x2)cos(60+x60+x2)\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\cos \left( \dfrac{60{}^\circ +x+60{}^\circ -x}{2} \right)\cos \left( \dfrac{60{}^\circ +x-60{}^\circ +x}{2} \right)
Hence, we have
cos(60+x)+cos(60x)=2cosxcos60\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\cos x\cos 60{}^\circ
We know that cos60=12\cos 60{}^\circ =\dfrac{1}{2}
Hence, we have
cos(60+x)+cos(60x)=2×12cosx=cosx\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\times \dfrac{1}{2}\cos x=\cos x, which is the same as obtained above.
Hence option [d] is correct.