Solveeit Logo

Question

Question: Find the value of the expression \(2\sin 3\theta \cos \theta -\sin 4\theta -\sin 2\theta \)....

Find the value of the expression 2sin3θcosθsin4θsin2θ2\sin 3\theta \cos \theta -\sin 4\theta -\sin 2\theta .

Explanation

Solution

Hint: Use sinx+siny=2sin(x+y2)cos(xy2)\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) to simplify the expression.
Alternatively, you can use 2sinxcosy=sin(x+y)+sin(xy)2\sin x\cos y=\sin \left( x+y \right)+\sin \left( x-y \right) to simplify the expression

Complete step by step answer:
We have
2sin3θcosθsin4θsin2θ=2sin3θcosθ(sin4θ+sin2θ)2\sin 3\theta \cos \theta -\sin 4\theta -\sin 2\theta =2\sin 3\theta \cos \theta -\left( \sin 4\theta +\sin 2\theta \right)
We know that sinx+siny=2sin(x+y2)cos(xy2)\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)
Put x=4θx=4\theta and y=2θy=2\theta , we get
sin4θ+sin2θ=2sin(4θ+2θ2)cos(4θ2θ2)=2sin3θcosθ\sin 4\theta +\sin 2\theta =2\sin \left( \dfrac{4\theta +2\theta }{2} \right)\cos \left( \dfrac{4\theta -2\theta }{2} \right)=2\sin 3\theta \cos \theta
Hence, we have
2sin3θcosθsin4θsin2θ=2sin3θcosθ2sin3θcosθ=02\sin 3\theta \cos \theta -\sin 4\theta -\sin 2\theta =2\sin 3\theta \cos \theta -2\sin 3\theta \cos \theta =0
Hence the expression identically goes to 0.

Note: Alternative Solution:
We know that 2sinxcosy=sin(x+y)+sin(xy)2\sin x\cos y=\sin \left( x+y \right)+\sin \left( x-y \right)
Put x=3θx=3\theta and y=θy=\theta , we get
2sin3θcosθ=sin(3θ+θ)+sin(3θθ)=sin4θ+sin2θ2\sin 3\theta \cos \theta =\sin \left( 3\theta +\theta \right)+\sin \left( 3\theta -\theta \right)=\sin 4\theta +\sin 2\theta
Hence we have 2sin3θcosθsin4θsin2θ=sin4θ+sin2θsin4θsin2θ=02\sin 3\theta \cos \theta -\sin 4\theta -\sin 2\theta =\sin 4\theta +\sin 2\theta -\sin 4\theta -\sin 2\theta =0
Hence the expression goes identically to 0.
We can remember the formulae involved in solving the question through this short Aid to memory:
[1] S+S = 2SC
[2] S-S = 2CS
[3] C+C= 2CC
[4] C-C=-2SS
Consider [3].
We can use it to remember two formulae
viz cosx+cosy=2cos(x+y2)cos(xy2)\cos x+\cos y=2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) and 2cosxcosy=cos(x+y)+cos(xy)2\cos x\cos y=\cos \left( x+y \right)+\cos \left( x-y \right).
Similarly, every equation shown above helps to memorise two equations.