Solveeit Logo

Question

Question: Find the value of the determinant \[\left| \begin{matrix} 18 & 41 & 89 \\\ 40 & 89 & 198...

Find the value of the determinant

18 & 41 & 89 \\\ 40 & 89 & 198 \\\ 89 & 198 & 440 \\\ \end{matrix} \right|$$
Explanation

Solution

Hint: Expand the given determinant about any row or column. Expansion of a determinant
a1b1c1 a2b2c2 a3b3c3 \left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\\ \end{matrix} \right| is given along the first row of the determinant as

a1(b2c3c2b3)b1(a2c3a3c2)+c1(a2b3a3b2){{a}_{1}}({{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}})-{{b}_{1}}({{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}})+{{c}_{1}}({{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}})

Complete step-by-step answer:
Let us suppose the value of given determinant be D. So, we get
DD= 184089 4089198 89198440 \left| \begin{matrix} 18 & 40 & 89 \\\ 40 & 89 & 198 \\\ 89 & 198 & 440 \\\ \end{matrix} \right| ………………. (i)
As, we know any determinant can be expanded about any of the row and column of that determinant in the following way:-
Let us suppose we have a determinant as
=a1b1c1 a2b2c2 a3b3c3 \vartriangle =\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\\ \end{matrix} \right|
We can expand this determinant about the first row as
a1(b2c3b3c2)b1(a2c3a3c2)+c1(a2b3b2a3){{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})-{{b}_{1}}({{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}})+{{c}_{1}}({{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}}) ………….. (ii)
So, we can expand the given determinant in equation with the help of equation (ii) as (about first row):-
D=184089 4089198 89198440 D=\left| \begin{matrix} 18 & 40 & 89 \\\ 40 & 89 & 198 \\\ 89 & 198 & 440 \\\ \end{matrix} \right|
D=18(3916039204)40(1760017622)+89(79207921)D=18(39160-39204)-40(17600-17622)+89(7920-7921)
On further simplifying the above expression, we get
D=18(44)40(22)+89(1)D=18(-44)-40(-22)+89(-1)

D=1D=-1

Hence, the value of the given determinant is -1.

So, we get 184089 4089198 89198440 =1\left| \begin{matrix} 18 & 40 & 89 \\\ 40 & 89 & 198 \\\ 89 & 198 & 440 \\\ \end{matrix} \right|=-1

Note: Instead of doing above lengthy calculations we can perform operations on rows or columns of the determinant to convert their elements to smaller numbers and then expand the determinant along the most suitable row or column , This method will actually save a lot of time if the right operations click to you.