Solveeit Logo

Question

Question: Find the value of the determinant: \[\det \left( {\begin{array}{*{20}{l}} {\sqrt {13} + \sqr...

Find the value of the determinant:

{\sqrt {13} + \sqrt 3 }&{2\sqrt 5 }&{\sqrt 5 } \\\ {\sqrt {15} + \sqrt {26} }&5&{\sqrt {10} } \\\ {3 + \sqrt {65} }&{\sqrt {15} }&5 \end{array}} \right)$$ A) $$15\sqrt 2 - 25\sqrt 3 $$ B) $$15\sqrt 5 - 25\sqrt 3 $$ C) $$25\sqrt 2 + 15\sqrt 3 $$ D) 0
Explanation

Solution

We will find the value of determinant of the given matrix.

Complete step by step solution:
Let A = \left( {\begin{array}{*{20}{l}} {\sqrt {13} + \sqrt 3 }&{2\sqrt 5 }&{\sqrt 5 } \\\ {\sqrt {15} + \sqrt {26} }&5&{\sqrt {10} } \\\ {3 + \sqrt {65} }&{\sqrt {15} }&5 \end{array}} \right)

5&{\sqrt {10} } \\\ {\sqrt {15} }&5 \end{array}} \right) - 2\sqrt 5 \left( {\begin{array}{*{20}{l}} {\sqrt {15} + \sqrt {26} }&{\sqrt {10} } \\\ {3 + \sqrt {65} }&5 \end{array}} \right) + \sqrt 5 \left( {\begin{array}{*{20}{l}} {\sqrt {15} + \sqrt {26} }&5 \\\ {3 + \sqrt {65} }&{\sqrt {15} } \end{array}} \right)$$

\det A = \left( {\sqrt {13} + \sqrt 3 } \right)\left( {5 \times 5 - \sqrt {10} \sqrt {15} } \right) - 2\sqrt 5 \left( {5 \times \left( {\sqrt {15} + \sqrt {26} } \right) - \sqrt {10} \left( {3 + \sqrt {65} } \right)} \right) + \sqrt 5 \left( {\sqrt {15} \left( {\sqrt {15} + \sqrt {26)} } \right) - 5\left( {3 + \sqrt {65} } \right)} \right) \\
+ \sqrt 5 (\sqrt {15} (\sqrt {15} + \sqrt {26)} - 5(3 + \sqrt {65} )) \\

Onsimplification,wegetOn simplification, we get

= 25\sqrt {13} + 25\sqrt 3 - \sqrt {13} \sqrt {15} \sqrt {10} - \sqrt 3 \sqrt {15} \sqrt {10} - 10\sqrt 5 \sqrt {15} - 10\sqrt 5 \sqrt {26} + 6\sqrt 5 \sqrt {10} + 2\sqrt 5 \sqrt {65} \sqrt {10} \\
+ \sqrt 5 \sqrt {15} \sqrt {15} + \sqrt 5 \sqrt {15} \sqrt {26} - 15\sqrt 5 - 5\sqrt 5 \sqrt {65} \\

Onexpandingthefactorsunderroot,wegetOn expanding the factors under root, we get

= 25\sqrt {13} + 25\sqrt 3 - \sqrt {13} \sqrt {5 \times 3} \sqrt {5 \times 2} - \sqrt 3 \sqrt {5 \times 3} \sqrt {5 \times 2} - 10\sqrt 5 \sqrt {5 \times 3} - 10\sqrt 5 \sqrt {13 \times 2} + 6\sqrt 5 \sqrt {5 \times 2} \\
+ 2\sqrt 5 \sqrt {13 \times 5} \sqrt {5 \times 2} + 15\sqrt 5 + 5\sqrt 2 \sqrt 3 \sqrt {13} - 15\sqrt 5 - 5\sqrt 5 \sqrt {13 \times 5} \\

OnsimplificationwegetOn simplification we get

= 25\sqrt {13} + 25\sqrt 3 - 5\sqrt {13} \sqrt 2 \sqrt 3 - 15\sqrt 2 - 50\sqrt 3 - 10\sqrt 5 \sqrt 2 \sqrt {13} + 30\sqrt 2 + 10\sqrt {13} \sqrt 5 \sqrt 2 + 15\sqrt 5 \\
+ 5\sqrt 2 \sqrt 3 \sqrt {13} - 15\sqrt 5 - 25\sqrt {13} \\

On adding like terms, we get $$ = 15\sqrt 2 - 25\sqrt 3 $$ **Therefore, $$\left| A \right| = 15\sqrt 2 - 25\sqrt 3 $$ Hence, option (A) is the correct answer.** **Note:** For calculating the determinant of any matrix, the matrix should be a square matrix. Determinant of any matrix A can be represented as $$\left| A \right|$$. Determinant of the identity matrix is always 1.