Solveeit Logo

Question

Question: Find the value of the derivative \(\dfrac{d}{dx}\left( \cos \left( a{{x}^{2}}+bx+c \right) \right)\)...

Find the value of the derivative ddx(cos(ax2+bx+c))\dfrac{d}{dx}\left( \cos \left( a{{x}^{2}}+bx+c \right) \right).
A. (2ax+b)sin(ax2+bx+c)-\left( 2ax+b \right)\sin \left( a{{x}^{2}}+bx+c \right)
B. (ax+b)sin(ax2bxc)-\left( ax+b \right)\sin \left( a{{x}^{2}}-bx-c \right)
C. (2ax+b)sin(ax2+bx+c)\left( 2ax+b \right)\sin \left( a{{x}^{2}}+bx+c \right)
D. (ax+b)sin(ax2+bx+c)-\left( ax+b \right)\sin \left( a{{x}^{2}}+bx+c \right)

Explanation

Solution

To solve this question, we should know the chain rule of differentiation. Let us consider a function y=f(g(x))y=f\left( g\left( x \right) \right) and the derivative of y with respect to x is given by the formula dydx=f(g(x))×g(x)\dfrac{dy}{dx}=f'\left( g\left( x \right) \right)\times g'\left( x \right). In our question, we have the function f as the cosine function and the function g as the quadratic expression ax2+bx+ca{{x}^{2}}+bx+c. Using the above formula, we can find the required derivative.

Complete step-by-step solution:
Let us consider a function of x such that y=f(g(x))y=f\left( g\left( x \right) \right) and let us consider the derivative of this function. We will consider g(x)=ug\left( x \right)=u. The function of y becomes
y=f(u)y=f\left( u \right)
We can write the derivative of the above term with respect to x as
dydx=dydu.dudx\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}
We can substitute the assumed terms in the above derivative to get
dydx=d(f(u))du.d(g(x))dx\dfrac{dy}{dx}=\dfrac{d\left( f\left( u \right) \right)}{du}.\dfrac{d\left( g\left( x \right) \right)}{dx}
Now, we can write the above differential as
dydx=f(u).g(x)\dfrac{dy}{dx}=f'\left( u \right).g'\left( x \right)
Substituting the term g(x)=ug\left( x \right)=u back in the derivative, we get
dydx=f(g(x)).g(x)\dfrac{dy}{dx}=f'\left( g\left( x \right) \right).g'\left( x \right)
This is the rule known as the chain rule in differentiation. Now, let us consider the derivative given to us in the question.
dydx=ddx(cos(ax2+bx+c))\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \cos \left( a{{x}^{2}}+bx+c \right) \right)
Comparing the above derivative with the derivative that we got in the chain rule, we get
y=f(g(x))=cos(ax2+bx+c)y=f\left( g\left( x \right) \right)=\cos \left( a{{x}^{2}}+bx+c \right)
f(u)=cosu u=g(x)=ax2+bx+c \begin{aligned} & f\left( u \right)=\cos u \\\ & u=g\left( x \right)=a{{x}^{2}}+bx+c \\\ \end{aligned}
Using the chain rule, we get
dydx=ddx(cos(ax2+bx+c))=d(cosu)du.d(ax2+bx+c)dx\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \cos \left( a{{x}^{2}}+bx+c \right) \right)=\dfrac{d\left( \cos u \right)}{du}.\dfrac{d\left( a{{x}^{2}}+bx+c \right)}{dx}
We know the differentiation formula
d(cosy)dy=sinu d(xn)dx=nxn1 \begin{aligned} & \dfrac{d\left( \cos y \right)}{dy}=-\sin u \\\ & \dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} \\\ \end{aligned}
Using these two relations, we get
d(cosu)du.d(ax2+bx+c)dx=sinu.(2ax+b)\dfrac{d\left( \cos u \right)}{du}.\dfrac{d\left( a{{x}^{2}}+bx+c \right)}{dx}=-\sin u.\left( 2ax+b \right)
Substituting u=g(x)=ax2+bx+cu=g\left( x \right)=a{{x}^{2}}+bx+c in the above equation, we get
ddx(cos(ax2+bx+c))=sin(ax2+bx+c).(2ax+b)\dfrac{d}{dx}\left( \cos \left( a{{x}^{2}}+bx+c \right) \right)=-\sin \left( a{{x}^{2}}+bx+c \right).\left( 2ax+b \right)
\therefore The value of the given differentiation isddx(cos(ax2+bx+c))=sin(ax2+bx+c).(2ax+b)\dfrac{d}{dx}\left( \cos \left( a{{x}^{2}}+bx+c \right) \right)=-\sin \left( a{{x}^{2}}+bx+c \right).\left( 2ax+b \right). The answer is option-A

Note: Some students might forget the negative sign in the derivative of cosine term which leads to a wrong answer. We can directly apply the chain rule on this question by ignoring what is inside the cosine term and directly differentiating it as if we differentiate cosx\cos x and after that, we should multiply this derivative by the derivative of the term inside the cosine function. The chain rule is a very important rule in differentiation which should be remembered.